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Abstract— Iterative source-channel decoding (ISCD) exploits
the residual redundancy of source codec parameters by using the
Turbo principle. However, ISCD might require more computa-
tional complexity than available. The main reason is that the uti-
lized soft decision source decoder (SDSD) can be computationally
quite expensive. In this paper we propose a joint source-channel
coding approach which reduces the computational complexity
of the SDSD by slightly modifying the quantizer such that the
complexity of the source decoder is reduced. The complexity of
the SDSD is further reduced by transforming the SDSD equations
into the logarithmic domain. We give analytical expressions for
the expected quality loss by the modified quantizer, simulation
results showing the overall ISCD system performance, as well as
complexity figures.

I. INTRODUCTION

With the discovery of Turbo codes, channel coding close to

the Shannon limit has become possible with moderate com-

putational complexity. In the past years, the Turbo principle

of exchanging extrinsic information between separate channel

decoders has also been extended to other receiver components.

In a Turbo-like process the residual redundancy of source

codec parameters such as scale factors or predictor coefficients

for speech, audio, and video signals can be exploited by iter-

ative source-channel decoding (ISCD) [1], [2]. This residual

redundancy occurs due to imperfect source encoding resulting

for instance from delay and complexity constraints. It can be

utilized by a soft decision source decoder (SDSD) [3], [4]

which exchanges extrinsic reliabilities with a channel decoder.

The execution of the SDSD, however, can be computation-

ally quite demanding, especially if large quantizer codebooks

are employed. In non-iterative transmission systems, it is

possible to execute the SDSD only for the most significant

bits, as proposed in [5]. However, if such a source decoder is

utilized in an ISCD transmission scheme, the source decoder

can only generate extrinsic information for the most significant

bits, leading to a sub-optimal performance.

Therefore, we propose a different approach for a

complexity-reduced ISCD receiver. It has been observed that

quite a high number of certain pairs of consecutive quantized

values (ūκ, ūκ−1) occur with small probabilities if the se-

quence is correlated. If the transmitter is modified in a way
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that these transitions are not allowed, the SDSD does not need

anymore a fully developed trellis, but a trellis with a reduced

number of state transitions. Note that only the number of state

transitions is reduced while the number of states remains the

same. This differs from the M -algorithm [6], which works

with a reduced number of states.

II. SYSTEM MODEL

In the following, we will briefly review the iterative source-

channel decoding (ISCD) system. In Fig. 1 the baseband

model of ISCD is depicted. At time instant t a source

encoder generates a frame ut = (u1, . . . uKS
) of KS un-

quantized source codec parameters uκ, with κ ∈ {1, . . . ,KS}
denoting the position within the frame. Each value uκ is

individually mapped to a quantizer reproduction level ūκ, with

ūκ ∈ U = {ū(1), . . . , ū(Q)}. The set U denotes the quantizer

codebook with a total number of |U| = Q codebook entries.

A unique (bipolar) bit pattern xκ ∈ X = {x(1), . . . ,x(Q)} of

M∗ bits (i.e., X ⊆ {±1}M∗

), with M∗ ≥ ⌈log2 Q⌉
.
= M , is

assigned to each quantizer level ūκ according to the index

assignment Γ(ū(i)) = x(i). The single bits of a bit pattern xκ

are indicated by xκ(m), m ∈ {1, . . . ,M∗}. If M∗ > log2 Q,

the index assignment Γ is called redundant index assign-

ment [7] and can be considered to be the composite function

Γ = ΓR ◦ ΓNB (i.e., Γ(ū) = (ΓR ◦ ΓNB)(ū) = ΓR(ΓNB(ū))).
The function ΓNB performs a non-redundant natural binary

index assignment, i.e., the binary representation of the code-

book index of ū is assigned to ΓNB(ū). The function ΓR, which

Quantizer
Index

Assignment

Channel

Channel

Encoder

Decoder

Utilization

of a priori

Knowledge

Parameter

Estimation

π

π

π
−1

Source Coding

n

ÿ
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Fig. 1. Baseband model of the utilized ISCD system
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is the redundancy introducing part, can be regarded as being a

(linear or non-linear) block code of rate rIA = M/M∗. After

index assignment, KS bit patterns are grouped to a frame of bit

patterns x = (x1, . . . ,xKS
) consisting of KS · M∗ bits. The

frame x of bits is then re-arranged by a bit interleaver π in

a deterministic, pseudo-random like manner. The interleaved

frame with KS · M∗ bits is denoted as x̆.

For channel encoding of a frame x̆, we use a convolutional

code of constraint length J +1 and of rate rC. In general, any

channel code can be used as long as the respective decoder is

able to provide the required extrinsic reliabilities. In this paper,

we restrict ourselves to rate rC = 1, recursive, non-systematic

convolutional codes as it has been shown [8] that the inner

code of a serially concatenated system should be recursive in

order to be capacity achieving. For the termination of the code,

J tail bits are appended to x̆. The encoded frame of length

KS · M∗ + J is denoted by y. The bits yk of y are indexed

by k ∈ {1, . . . ,KS · M∗ + J}. Prior to transmission over the

channel, the encoded bits yk are mapped to bipolar values

ÿk forming a sequence ÿ ∈ {±1}KS ·M∗+J . We only consider

BPSK modulation in this paper in order to demonstrate the

concept, which can easily be extended to include higher order

modulation schemes [9], [7].

On the channel, the modulation symbols ÿk (with symbol

energy Es = 1) are subject to additive white Gaussian noise

(AWGN) with known variance σ2
n = N0/2.

The received symbols zk ∈ {±1} are transformed to L-

values [10] prior to being evaluated in a Turbo process which

exchanges extrinsic reliabilities between the channel decoder

(CD) and the soft decision source decoder (SDSD).

The channel decoder used in this paper is based on the

LogMAP algorithm [11], [10]. For the derivations of the

equations for computing the extrinsic probabilities of the

SDSD, we refer the reader to the literature, e.g., [2], [3],

[12], [13]. In Section IV, we will briefly revise the SDSD

equations and give expressions in the logarithmic domain in

order to evaluate the complexity and the complexity savings

of the proposed algorithms.

III. CONDITIONAL SCALAR QUANTIZATION

In this section we present the concept of conditional scalar

quantization, which enables a very efficient realization (in

terms of computational complexity) of the soft decision source

decoder (SDSD). Although we present the concept for scalar

quantization and a first order Markov model only, the exten-

sion to vector quantization as well as higher order Markov

models is straightforward.

If U denotes the original quantizer codebook, let

C = {C(1), . . . , C(Q)} denote the set of all quantization cells

with

C(q)={u : |u − ū(q)|< |u − ū(ℓ)|,∀ū(ℓ)∈U, ū(ℓ) 6= ū(q)}. (1)

Conditional quantization exploits the correlation between suc-

cessive samples in such a way that the quantization of the cur-

rent value uκ depends on the previously quantized value ū
(i)
κ−1.

For quantizing the current sample uκ, the conditional quantizer

only considers codebook entries ū(j) where the conditional

probability P (ū
(j)
κ |ū

(i)
κ−1) is above a certain threshold T . We

define a set of reduced codebooks Ured,i with

Ured,i =
{

ū(j)
κ : P

(

ū(j)
κ |ū

(i)
κ−1

)

> T ,∀ ū(j)
κ ∈ U

}

. (2)

The conditional quantizer uses the reduced codebook Ured,i

to quantize the sample uκ if the previous sample has been

quantized to ū
(i)
κ−1. Let |Ured,i| denote the number of entries

in the reduced codebook Ured,i. The total number of allowed

transitions ū
(i)
κ−1 → ū

(j)
κ is thus reduced from N ′ = Q2 to

N
.
=

Q
∑

i=1

|Ured,i| . (3)

This (reduced) number of transitions is directly linked to

the complexity of the source decoder as shall be seen in

Section IV. Let Xred,i denote the set of all bit patterns assigned

to the reduced codebook Ured,i. Furthermore, we define

U
′
red,j

.
=
{

ū
(i)
κ−1 : ū(j)

κ ∈ Ured,i,∀ i ∈ {1, . . . , Q}
}

(4)

to be the set of all codebook entries ū
(i)
κ−1 that allow a tran-

sition ū
(i)
κ−1 → ū

(j)
κ . Again, X

′
red,j denotes the set of assigned

bit patterns to the entries of U
′
red,j .

Note that the utilization of conditional quantization also

modifies the a priori knowledge of first order which is

exploited in the source decoder. We denote this modified

conditional probability Pred(ū
(j)|ū(i)) with ū(j) ∈ Ured,i and

ū(i) ∈ U. Again, for the conditional quantizer, quantization

cells C
(q)
red,i with

C
(q)
red,i = {u : |u − ū(q)|< |u − ū(ℓ)|,∀ū(ℓ)∈Ured,i, ū

(ℓ) 6= ū(q)}

can be defined for q = 1, . . . , |Ured,i|. For a given (station-

ary) source with (two-dimensional) joint probability func-

tion pU (uκ, uκ−1) = pU (uκ|uκ−1) · pU (uκ−1) the quantiza-

tion noise amounts to (e.g. [4], [14])

N =
∑

ū
(i)
κ−1

∈U

∑

ū
(j)
κ ∈Ured,i

∫

C(i)

∫

C
(j)

red,i

(

ζ − ū(j)
κ

)2

pU (ζ, ν) dζ dν. (5)

The quantization noise is determined by considering all

possible previous samples ū
(i)
κ−1 ∈ U and then calculating

the quantization noise amount of the pair (ū
(i)
κ−1, ū

(j)
κ ) with

ū
(j)
κ ∈ Ured,i by solving the double integral in (5). The

total quantization noise is then obtained by summing over all

combinations of (ū
(i)
κ−1, ū

(j)
κ )

As an example, we assume that the source realizes a Gauss-

Markov process of first order with correlation ρ, zero mean

and variance σ2
u = 1. The two-dimensional joint distribution

of the source amounts to (e.g., [4])

pU (uκ, uκ−1) =
1

2π
√

1 − ρ2
· e

−
u2

κ+u2
κ−1

−2ρuκuκ−1

2(1−ρ2) . (6)

Figure 2 depicts the number of transitions N as a function of

the threshold T for ρ ∈ {0.5; 0.7; 0.9} and Q = 16 quantizer
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Fig. 2. Number of transitions N as a function of the threshold T for
Q = 16 (top) and Q = 32 (bottom).

levels (top subplot) as well as for Q = 32 (bottom subplot).

As it is expected intuitively, a higher correlation ρ leads to a

lower number of transitions N as transitions uκ−1 → uκ with

|uκ − uκ−1| ≫ 0 occur less frequently.

The most interesting question however is how much the

signal quality is affected by conditional quantization. There-

fore, (5) is evaluated for the same source and the signal-to-

noise ratio after quantization is determined as a function of the

reduced number of transitions N . The original codebook U is

assumed to be the optimum Lloyd-Max codebook [14]. The

results are depicted in Fig. 3, for Q = 16 (top subplot) and

Q = 32 (bottom subplot). It can be seen that for ρ ≥ 0.7 the

number of transitions can be halved (e.g., from Q2 = 1024 to

N ≈ 500 for Q = 32) without affecting the SNR considerably.

Note that although we introduced the concept of conditional

quantization for intra-frame correlation only, it is also easily

applicable to inter-frame correlation.

IV. COMPLEXITY CONSIDERATIONS

In Section IV-A we first revise the SDSD equations [1],

[2], [13] and then modify the expressions such that the SDSD

operates in the logarithmic domain in Section IV-B. The given

expressions are already modified in such a way that conditional

quantization is incorporated. The full expressions are needed

in order to determine the complexity figures in Section IV-C.

A. SDSD Revisited

The SDSD may be interpreted as a modification of the well-

known BCJR algorithm [11], operating on a fully developed
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Fig. 3. Parameter SNR as a function of the number of transitions for
different values of auto-correlation ρ for Q = 16 (top) and Q = 32
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trellis diagram. In this section, we assume that only intra-frame

correlation is exploited by the SDSD, the extension towards

inter-frame correlation is straightforward by exchanging the

position indices κ with time indices t.
The input to the soft decision source decoder (SDSD) are

the extrinsic L-values generated by the channel decoder

L
[input]
SDSD (xκ(m)) = L

[ext]
CD (xκ(m))

= ln

(

P
[ext]
CD (xκ(m)=+1)

P
[ext]
CD (xκ(m)=−1)

)

. (7)

The first step of the SDSD consists in determining the factors

θ(x
(j)
κ ) for each distinct bit pattern x

(j)
κ with

θ(x(j)
κ ) = exp

(

M∗

∑

m=1

x
(j)
κ (m)

2
L

[input]
SDSD (xκ(m))

)

. (8)

Note that x
(j)
κ (m) ∈ {±1}. The forward and backward

recursion of the SDSD are given by

α(x(j)
κ ) = θ(x(j)

κ )
∑

x
(i)
κ−1

∈X′
red,j

α(x
(i)
κ−1)Pred(x

(j)
κ |x

(i)
κ−1) (9)

= θ(x(j)
κ ) · A(x(j)

κ ) (10)

β(x
(i)
κ−1) =

∑

x
(j)
κ ∈Xred,i

β(x(j)
κ )θ(x(j)

κ )Pred(x
(j)
κ |x

(i)
κ−1) (11)

with the initialization α(x
(ℓ)
0 ) = P (x(ℓ)), β(x

(ℓ)
KS

) = 1,

∀ℓ ∈ {1, . . . , Q}, (see, e.g., [13]). We furthermore define
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A(x
(j)
κ )

.
=
∑

x
(i)
κ−1

∈X′
red,j

α(x
(i)
κ−1)Pred(x

(j)
κ |x

(i)
κ−1). Of course,

the summations in (9) and (11) only have to be evaluated for

those pairs of (x
(i)
κ−1,x

(j)
κ ) with an existing transition between

the corresponding (ū
(i)
κ−1, ū

(j)
κ ) (i.e., P (ū

(j)
κ |ū

(i)
κ−1) > T ). Fur-

ther note that due to conditional quantization the exploited a

priori information changes. Therefore Pred(x
(j)
κ |x

(i)
κ−1) has to

be utilized instead of P (x
(j)
κ |x

(i)
κ−1) (see also Section III).

The final step of the SDSD consists in determining the

extrinsic information for each bit xκ(m) which is given by

[1] (in terms of L-values)

L
[ext]
SDSD(xκ(m)) = ln

Q
∑

j=1

x
(j)
κ (m)=+1

β(x
(j)
κ )θ

[ext]
m (x

(j)
κ )A(x

(j)
κ )

Q
∑

j=1

x
(j)
κ (m)=−1

β(x
(j)
κ )θ

[ext]
m (x

(j)
κ )A(x

(j)
κ )

(12)

with

θ[ext]
m (x(j)

κ ) = exp









M∗

∑

ℓ=1
ℓ 6=m

x
(j)
κ (ℓ)

2
L

[input]
SDSD (xκ(ℓ))









. (13)

B. SDSD in the Logarithmic Domain

In a practical implementation the translation of the BCJR

algorithm to the logarithmic domain offers several advan-

tages such as, e.g., better numerical stability [15]. In the

following, we derive the equations for the SDSD in the log-

arithmic domain. Therefore, we define θ̃(x
(j)
κ )

.
= ln θ(x

(j)
κ ),

α̃(x
(j)
κ )

.
= lnα(x

(j)
κ ), as well as β̃(x

(j)
κ )

.
= lnβ(x

(j)
κ ). With

(8), the expression of θ̃(x
(j)
κ ) becomes

θ̃(x(j)
κ ) =

M∗

∑

m=1

1

2
x(j)

κ (m)L
[input]
SDSD (xκ(m)) . (14)

Taking the natural logarithm of (9) and using α̃(x
(j)
κ )

as well as θ̃(x
(j)
κ ) leads to (with P̃red(x

(j)
κ |x

(i)
κ−1)

.
=

lnPred(x
(j)
κ |x

(i)
κ−1)) [15]

α̃(x(j)
κ ) = θ̃(x(j)

κ ) + ln







∑

x
(i)
κ−1

∈X′
red,j

e
ln
(

α(x
(i)
κ−1

)·Pred(x
(j)
κ |x

(i)
κ−1

)
)







= θ̃(x(j)
κ )+ln







∑

x
(i)
κ−1

∈X′
red,j

eα̃(x
(i)
κ−1

)+P̃red(x
(j)
κ |x

(i)
κ−1

)






(15)

The expression ln
(

eδ1 + eδ2
)

which is part of (15) can be

computed using the Jacobian logarithm [15]:

ln
(

eδ1 + eδ2
)

= max(δ1, δ2) + fc(|δ1 − δ2|)
.
= max*(δ1, δ2) (16)

with fc(ζ) = ln
(

1 + e−ζ
)

and ln
(

eδ1 + eδ2 + eδ3 + . . .
)

=
max*(δ1, δ2, δ2, . . .) = max*(δ1,max*(δ2,max*(δ3, . . .))).
Furthermore, max*(δ1,−∞) = max*(−∞, δ1) = δ1. The

max* function can be efficiently implemented using, e.g., a

lookup table.

Using the max* function, (15) can then be rewritten as

α̃(x(j)
κ ) = θ̃(x(j)

κ ) + max*

x
(i)
κ−1

∈X′
red,j

(

α̃(x
(i)
κ−1)+P̃red(x

(j)
κ |x

(i)
κ−1)

)

.

(17)

Similarly, the backward recursion (11) can be rewritten as

β̃(x
(i)
κ−1)= max*

x
(j)
κ ∈Xred,i

(

β̃(x(j)
κ )+θ̃(x(j)

κ )+P̃red(x
(j)
κ |x

(i)
κ−1)

)

.

(18)

The determination of the extrinsic information (12) can also

be expressed using the max* operator

L
[ext]
SDSD(xκ(m))=

Q

max*

j=1

x
(j)
κ (m)=+1

(

α̃(x(j)
κ )+β̃(x(j)

κ )−
1

2
L

[input]
SDSD (xκ(m))

)

−
Q

max*

j=1

x
(j)
κ (m)=−1

(

α̃(x(j)
κ )+β̃(x(j)

κ )+
1

2
L

[input]
SDSD (xκ(m))

)

(19)

by consecutively exploiting the facts that ln θ
[ext]
m (x

(j)
κ ) =

θ̃(x
(j)
κ )− 1

2x
(j)
κ (m)L

[input]
SDSD (xκ(m)) (compare (8) and (13)) and

θ̃(x
(j)
κ ) + lnA(x

(j)
κ ) = α̃(x

(j)
κ ) (see (10)).

The last step of the SDSD consists in estimating the

parameters û which is done here using an MMSE estimation

û =

Q
∑

i=1

ū(i) exp
(

α̃(x(i)
κ ) + β̃(x(i)

κ ) + C̃1

)

(20)

with the constant C̃1 ∈ R which is chosen such that
∑Q

i=1 exp
(

α̃(x
(i)
κ ) + β̃(x

(i)
κ ) + C̃1

)

!
= 1. Note that the pa-

rameter estimation only has to be performed once per frame

and not for each iteration.

C. Complexity of the SDSD

The evaluation of (14) requires Q · M∗ additions per

parameter as the θ̃(x
(j)
κ ) have to be determined for each

possible bit pattern x
(j)
κ ∈ X. The factors 1

2L
[input]
SDSD (xκ(m)) can

be calculated and stored (as they are needed a second time in

the run-time of the algorithm) using M∗ multiplications per

parameter. The multiplication by xκ(m) corresponds to a sign

change only as xκ(m) ∈ {±1}. The forward and backward

recursions also have to be calculated for each x
(j)
κ ∈ X. In

the case of conventional SDSD (i.e., |Ured,i| = |Xred,i| =
|U′

red,i| = |X′
red,i| = Q), the evaluation of (17) requires Q2

max* operations as well as Q + Q2 additions per parameter

while the evaluation of (18) requires Q2 max* operations and

2Q2 additions per parameter. If conditional quantization is

utilized, the number of max* operations each reduces to N
and the number of additions to Q + N (forward recursion),

respectively 2N (backward recursion). Finally, the evaluation

of (19) requires M∗Q max* operations as well as M∗(2Q+1)
additions for the conventional as well as for the reduced-

complexity SDSD.

In some cases (e.g. if inter-frame correlation is exploited)

only the forward recursion can be carried out due to delay
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TABLE I

OPERATIONS PER PARAMETERS NEEDED BY THE SDSD

• Full algorithm:

Standard Conditional Quantization

max* 2Q2 + M∗Q 2N + M∗Q

ADD 3Q2 + (3M∗ + 1)Q + M∗ 3N + (3M∗ + 1)Q + M∗

MUL M∗ M∗

• Forward only algorithm:

Standard Conditional Quantization

max* Q2 + M∗Q N + M∗Q

ADD Q2 + (2M∗ + 1)Q + M∗ N + (2M∗ + 1)Q + M∗

MUL M∗ M∗

constraints. In this case β̃(x
(j)
κ ) is set to zero in (19) as

the backward recursion (18) does not need to be carried

out. Table I summarizes the number of operations required

for both the standard SDSD and the complexity reduced

SDSD by conditional quantization. Both cases are considered:

the forward/backward algorithm and the forward-only variant.

Note that we do not consider the complexity of the parameter

estimation as this step, which is only performed once per

frame, is required in any case. Thus the complexity figures

given here only include the operations performed in the block

denoted “Utilization of a priori knowledge” in Fig. 1.

V. SIMULATION RESULTS

The capabilities of the proposed ISCD system are demon-

strated by two simulation examples. The parameter signal-

to-noise ratio (SNR) between the originally generated pa-

rameters u and the reconstructed estimated parameters û
is used for quality evaluation. The parameter SNR is plot-

ted for different values of Eu/N0, with Eu denoting the

energy per source parameter u (Eu = M∗ · 1
rC · Es). The

source is realized by a Gauss-Markov (autoregressive) process

with correlation coefficient ρ fixed to ρ = 0.9. This auto-

correlation value can be observed in typical speech and audio

codecs, e.g., for the scale factors in CELP codecs or MP3.

The utilized channel code is a rate rC = 1 recursive non-

systematic convolutional code of constraint length J = 4

with generator polynomial GC(D) =
(

1
1+D+D2+D3

)

. The

non-iterative reference scheme uses optimized components for

non-iterative systems, i.e., a natural binary index assignment

with M∗ = M = log2⌈Q⌉ and a rate rC = 1
2 recursive, sys-

tematic convolutional code of constraint length J = 4 with

GC(D) =
(

1+D2+D3

1+D+D3

)

.

In a first experiment (denoted “experiment A”), we assume

that the source exhibits intra-frame correlation, i.e., the single

elements uκ of ut are modelled by a 1st order Gauss-Markov

process and a frame consists of KS = 50000 parameters. The

quantization is performed using a Q = 16 level Lloyd-Max

codebook U and the redundant index assignment ΓR consists

of the (8, 4) block code with generator matrix

GΓ
BC(8,4) =





1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1



 (21)

proposed in [16]. This index assignment results in M∗ = 8 bit.

The overall coding rate of the system amounts to rIA ·rC = 1
2 .

TABLE II

OPERATIONS PER PARAMETER AND ITERATION NEEDED BY THE SDSD

FOR EXPERIMENT A (TOP) AND EXPERIMENT B (BOTTOM)

Q = 16 Standard Conditional
M∗ = 8 T = 0.01 T = 0.03 T = 0.05

Forw./Backw. N = 112 N = 90 N = 84

max* 640 352 308 296
ADD 1176 744 678 660

Q = 32 Standard Conditional
M∗ = 10 T = 0.005 T = 0.01 T = 0.03
Forw. only N = 408 N = 368 N = 284

max* 1344 728 688 604
ADD 1706 1090 1050 966
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Fig. 4. Simulation results for experiment A and experiment B

At the receiver, 15 iterations are carried out. The simulation

results are depicted in Fig. 4 for the standard SDSD with “reg-

ular” quantization as well as for the complexity-reduced sys-

tem with conditional quantization for T ∈ {0.01; 0.03; 0.05}.

Note that the depicted non-iterative scheme uses SDSD while

today’s systems with hard-decision source decoding perform

even worse. The resulting number of transitions N as well

as the number of required max* operations and additions are

summarized in Table II. As predicted by (5), the maximum

attainable parameter SNR is reduced due to the influence of the

conditional quantizer. Interestingly, the lower the number of

transitions (i.e., for higher values of T ), the more the waterfall

region is moved towards lower channel qualities.

This behavior can be explained by an EXIT chart analy-

sis [17]: The EXIT characteristics for the conventional SDSD

as well as for the complexity-reduced SDSD with conditional

quantization are depicted in Fig. 5-a). The area ASDSD under

the EXIT curve of the complexity-reduced SDSD is larger than

the area under the EXIT curve of the conventional SDSD. This

leads to an earlier convergence (for lower channel qualities)

as the area underneath the EXIT characteristic is linked to

the channel quality where the waterfall region occurs [18].

The larger area is obvious as 1 −ASDSD is a function of the
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Fig. 5. EXIT chart analysis for Q = 16 and M∗ = 8 (index assignment
generator matrix from (21)) for conventional SDSD (“Standard”) and
for conditional quantization SDSD with T = 0.05, i.e., N = 84.
Area under EXIT characteristic as a function of N .

conditional entropy H(ūκ|ūκ−1) [19], which is reduced by

the conditional quantizer. The reduction is caused by the fact

that now Pred(x
(j)
κ |x

(i)
κ−1) is exploited by the SDSD (instead

of P (x
(j)
κ |x

(i)
κ−1)). Figure 5-b) depicts ASDSD as a function of

the number of transitions N for the given setup.

In a second experiment (denoted “experiment B”) we

assume that the source exhibits inter-frame correlation, i.e.,

all the single elements uκ of ut are assumed to be statistically

independent from each other. The different samples uκ are

correlated with their counterpart from previous frames. In this

experiment, a frame consists of KS = 250 parameters. In

order not to introduce any additional delay, the forward-only

SDSD has to be employed. The block coded index assignment

ΓR utilized for experiment B corresponds to a (31, 26) BCH

code shortened to (10, 5) [20]. The generator matrix of the

shortened systematic code is given by

GΓ
BCH(10,5) =







1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 1 0 1 1 1






. (22)

Note that we do not use a specially optimized index assign-

ment but a standard small block code for demonstrating the

concept. One possibility to optimize the index assignments are

irregular index assignments introduced in [21].

At the receiver 20 iterations are carried out. The simulation

results are depicted in Fig. 4 and the number of utilized

operations are summarized in Table II. The results behave as

expected: again a shift of the waterfall region towards lower

channel qualities is observed.

VI. CONCLUSION

In this paper we presented a quantizer modification

called conditional quantization which leads to an efficient,

complexity-reduced soft-decision source decoder (SDSD) em-

ployed in an iterative source-channel decoding scheme. We

have derived an analytical expression for the quality loss

resulting from the non-optimum quantizer. Furthermore we

have modified the expressions for determining the extrinsic

information of the SDSD leading to a numerically stable,

low-complexity implementation in the logarithmic domain and

further reduced the complexity by adapting the SDSD to the

conditional quantizer. Simulation results confirm the expected

behavior. A similar reconstruction quality is observed with

almost half the number of operations. It has been observed that

the utilization of conditional quantization shifts the waterfall

region towards lower channel qualities. This behavior can be

explained by the EXIT chart, using the fact that the modified

quantizer reduces the conditional entropy between consecutive

source samples and thus modifies the area under the EXIT

characteristic.

REFERENCES

[1] M. Adrat, P. Vary, and J. Spittka, “Iterative Source-Channel Decoder
Using Extrinsic Information from Softbit-Source Decoding,” in IEEE

ICASSP, Salt Lake City, May 2001.
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