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Abstract— In this paper, we present a novel near-lossless com-
pression scheme for scalar quantized source codec parameters.
The scheme is comparable to a Turbo source coding approach
and can inherently incorporate protection against transmission
errors. We show that using the concept of EXIT charts and inner
irregular convolutional codes of rate > 1, a linear program-
ming optimization problem can be formulated resulting in the
minimization of the transmitted number of bits given a certain
channel quality. The solution of this problem leads to an irregular
inner code offering the best possible compression. The advantage
of this method in comparison to a previous proposal is the easy
adaptability to varying source conditions.

I. INTRODUCTION

With the discovery of Turbo codes, channel coding close to

the Shannon limit has become possible with moderate com-

putational complexity. In the recent years, the Turbo principle

of exchanging extrinsic information between separate channel

decoders has also been adapted to other receiver components.

To exploit the residual redundancy in source codec parameters

such as scale factors or predictor coefficients for speech, audio,

and video signals in a Turbo process, iterative source-channel

decoding (ISCD) has been proposed in [1], [2] as a means to

further improve the quality of soft decision source decoding

(SDSD) [3]. This residual redundancy occurs due to non-

ideal source encoding resulting from, e.g., delay or complexity

constraints.

In [4] and [5], it has been shown that Turbo codes can

also be used as source encoders. Conventional entropy source

encoders such as Huffman codes or arithmetic codes are very

sensitive to transmission errors while the Turbo source coding

approach automatically incorporates error protection and can

adapt on the fly to changing channel conditions by increasing

or decreasing the amount of artificial redundancy introduced

by the channel code.

In [6], we have presented a novel concept for the near-

lossless compression of scalar quantized source codec param-

eters based on a joint source-channel coding approach with

ISCD at the receiver. The utilized inner channel code was a

fixed code of rate r ≥ 1 and the outer code was an irregular

redundant index assignment, as proposed in [7]. The irregular

index assignment has been optimized according to the concept

of irregular codes [8], allowing for a simple optimization
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using EXIT charts [9], a convenient tool for the convergence

analysis of iteratively decoded concatenated codes. In order to

realize source compression, the optimization guideline of [8]

and [7] has been modified in [6], leading to a linear program.

The limitations of the approach in [6] is that whenever the

properties of the source change, new EXIT characteristics

of the source with different index assignments have to be

computed before performing a new optimization.

Here, we propose an approach which does not optimize the

outer component of the serially concatenated transmitter but

the inner component, i.e., the channel code. The approach

is based on irregular inner codes, as used, e.g., in [10],

with a different optimization goal however. These codes have

the advantage that their EXIT characteristic can easily be

approximated using the characteristic of a mother code [11].

The other advantage of this approach is that the optimization

can more easily cope with varying source properties. Thus, we

present a system based on inner irregular codes that realizes an

efficient, flexible compression scheme which can easily adapt

to varying source conditions.

II. SYSTEM MODEL

In Fig. 1 the baseband model of the considered ISCD system

is depicted. At time instant t a source encoder generates a

frame ut = (u1,t, . . . , uKS ,t) of KS unquantized source codec

parameters uκ with κ ∈ {1, . . . ,KS} denoting the position in

the frame. Each value uκ is individually mapped to a quantizer

reproduction level ūκ, with ūκ ∈ U = {ū(1), . . . , ū(Q)}. The

set U denotes the quantizer codebook with a total num-

ber of |U| = Q codebook entries. Without loss of gener-

ality, we restrict Q to take only values which are powers

of 2, i.e., Q = 2M , with M ∈ N. A unique bit pattern

bκ ∈ B = {b(1), . . . ,b(Q)} of M⋆ bits (i.e., B ⊆ F
M⋆

2 , F =
{0; 1}), is assigned to each quantizer level ūκ according to the

index assignment Γκ(ū(i)) = b(i), i = 1, . . . , Q. The index

assignment (which is also often denoted as bit mapping in the

literature) thus assigns a bit pattern b(i) to the quantization

index i. For notational convenience we omit the time index t in

the following if the meaning of the equation is non-ambiguous.

The single bits of a bit pattern bκ are indicated by bκ(m),
m ∈ {1, . . . ,M⋆}. We define in this work M⋆ .

= M + 1.

As M⋆ = M + 1 > log2 Q = M , the index assignment

Γκ is called redundant index assignment as it introduces

redundancy: here one more bit than actually necessary is
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Fig. 1. Baseband model of the utilized ISCD system

spent to represent a quantizer reproduction level. It is known

that redundant index assignments can lead to significant

improvements in the context of ISCD [12]. The index as-

signment can be considered to be the composite function

Γκ(ū) = ΓR
κ(ΓNR(ū)). First, the function ΓNR performs a non-

redundant mapping of the Q quantizer reproduction levels to

patterns consisting of M bits. Second, the function ΓR
κ can

be regarded as a (potentially non-linear) block code. In this

contribution, the function ΓR
κ realizes a single parity check

code, i.e., the bit pattern bκ can be written as

bκ = (bκ(1), . . . , bκ(M), bκ(1)⊕ bκ(2)⊕· · ·⊕ bκ(M)) , (1)

with bκ(1), . . . , bκ(M) being the natural binary representation

of the quantizer index i. The rate of the (redundant) index

assignment is rIA = M
M+1 . After the index assignment,

KS bit patterns are grouped to a frame of bit patterns

x = (b1, . . . ,bKS
) consisting of NX

.
= KS · (M + 1) bits.

The frame x of bits is rearranged by a bit interleaver π in

a deterministic, pseudo-random like manner. The interleaved

frame is denoted as x̆.

As, according to [13], a necessary condition for a serially

concatenated system to be capacity achieving is an inner

component with code rate rinner ≥ 1, we use an irregular

convolutional code of rate rCC > 1 as proposed in [10]

for channel encoding of a frame x̆. The irregular convolu-

tional encoder is depicted in Fig. 2. The input bit frame x̆

is partitioned into NCC different sub-frames x̆
[irr]
ℓ of length

L[irr]
ℓ , ℓ ∈ {1, . . . , NCC} which are individually encoded by

one of the NCC dedicated convolutional encoders. Note that
∑NCC

ℓ=1 L[irr]
ℓ = KS · (M + 1). Each of these convolutional

encoders is a randomly punctured recursive convolutional code

of memory Jℓ and of rate rCC
ℓ according to [14]. All the

convolutional codes are assumed to be zero terminated, i.e., Jℓ

tail bits are appended to each x̆
[irr]
ℓ . The length of the encoded

frame amounts approximately to

LCC ≈

NCC
∑

ℓ=1

⌈

L[irr]
ℓ + Jℓ

rCC
ℓ

⌉

. (2)

Note that the length can only be approximately given as

due to the random puncturing, the exact size depends on the

Convolutional

Convolutional

Encoder 1

Encoder NCC

ÿx̆

Fig. 2. Irregular convolutional encoder

state of the random number generator influencing the resulting

puncturing pattern. The total rate of the inner irregular encoder

thus amounts to rinner = NX

LCC
= KS(M+1)

LCC
.

Randomly punctured codes have been introduced in [14]

and consist of (in our case) a rate 1/2 recursive systematic

convolutional (RSC) code punctured with a random puncturing

matrix to a rate of rCC
ℓ . Besides their final rate, they are also

characterized by the fraction Psys,ℓ of punctured systematic

bits. Using Psys,ℓ and rCC
ℓ , the fraction of punctured non-

systematic bits can be computed and the puncturing can be

performed using a Bernoulli random number generator. For

more details, we refer the reader to [14].

The encoded frame of length LCC is denoted by y. The bits

yk of y are indexed by k ∈ {1, . . . , LCC}. Prior to transmission

over the channel, the encoded bits yk are mapped to bipolar

values ÿk forming a sequence ÿ ∈ {±1}LCC . On the channel,

the (modulation) symbols ÿk (with symbol energy Es = 1) are

subject to additive white Gaussian noise (AWGN) with known

power spectral density σ2
n = N0/2.

The received symbols zk are transformed to L-values [15]

prior to being evaluated in a Turbo process which exchanges

extrinsic reliabilities between channel decoder (CD) and soft

decision source decoder (SDSD). The irregular channel de-

coder demultiplexes the received symbols into NCC different

sub-streams according to the partitioning performed inside

the irregular encoder. Each of these NCC sub-streams is

individually decoded using a MAP algorithm [16] and the

resulting L-values are multiplexed to a single stream. For the

equations of the SDSD, we refer to the literature, e.g., [1],

[12]. After a given number of iterations, the block entitled

Parameter Estimation performs a MAP estimation and selects

an estimated parameter ûκ,t ∈ U.

III. NEAR-LOSSLESS SOURCE CODING USING INNER

IRREGULAR CODES

It has been shown in, e.g., [4] and [5], that Turbo codes can

be efficiently used as source codes, realizing a near-lossless

compression scheme. Near-lossless means that a perfect recon-

struction cannot be guaranteed but a small amount of errors has

to be tolerated. With some slight modifications (see, e.g., [17])

lossless entropy coding schemes can be realized with Turbo

codes. Classical entropy coding compression schemes like

Huffman or arithmetic codes are able to achieve high compres-

sion ratios with moderate computational complexity, however,

in the presence of channel noise, severe error propagation and

synchronization losses may occur. Soft decision source decod-

ing and iterative source-channel decoding can also be applied
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to entropy codes [18] at the cost of increased computational

complexity. It has been shown in [14] that a system utilizing

fixed-length codes can achieve comparable results (in terms of

reconstruction quality and symbol error rate) to a system with

variable-length codes,with lower computational complexity at

the receiver if channel noise is present.

In [6] we have used an ISCD system with redundant index

assignments for realizing a near-lossless source coding system.

The convolutional code in that case was a rate > 1 code ob-

tained by deterministic puncturing of a rate < 1 mother code.

The index assignment was irregular and designed to minimize

the number of transmitted bits after channel coding. In this

contribution we employ a fixed redundant index assignment

and optimize the inner channel code such that the number of

transmitted bits is minimized. The minimization is based on

an optimization in the EXIT chart domain using the concept

of irregular codes [8]. Several component codes of different

rates are used to encode parts of the current frame. The overall

EXIT characteristic of the code is the weighted superposition

of the EXIT characteristic of the different sub-codes. Irregular

convolutional codes as inner codes have been successfully

employed in the context of iterative source-channel decoding

in [10]. However, the optimization goal in [10] was a different

one as in the present paper: here we minimize the number

of bits that are transmitted over the channel whereas in [10]

the squared error between the EXIT functions of source and

channel decoder was minimized.

In order to perform source coding, the optimization goal is

to find an EXIT characteristic which results in the smallest

number of transmitted bits with the constraint that an open

decoding tunnel in the EXIT chart exists. We assume that a

total number NCC of different convolutional code configura-

tions are available. The code shall be optimized at a design

channel quality Es

N0

. The EXIT characteristics CCC
ℓ of the

different randomly punctured convolutional codes are recorded

at the design Es

N0

. One advantage of randomly punctured

convolutional codes is that their EXIT characteristic can be

computed from the characteristic of the mother code [11]. It

is assumed that CCC
ℓ is composed of P sample points of the

EXIT characteristic. The sampled characteristics are placed

into a matrix C of dimension P × NCC. Furthermore, the

EXIT characteristic CSDSD of the SDSD given the single parity

check code redundant index assignment is recorded and P
sample points of its inverse [CSDSD]−1 are stored in the column

vector d.

During the optimization of the irregular inner code, we seek

for weights wℓ which determine the amount of bits of x̆ that

are encoded by the ℓ-th code. This means that L[irr]
ℓ = wℓNX .

The goal of the optimization is to minimize the number of

bits LCC under the constraint that the data can be recovered

at the receiver. This corresponds to a classical compression

scheme: we want to transmit the minimum number of bits

and reconstruct the original data at the receiver. The number

of bits LCC can be expressed as

LCC ≈

NCC
∑

ℓ=1

wℓNX + Jℓ

rCC
ℓ

=

NCC
∑

ℓ=1

wℓNX

rCC
ℓ

+

NCC
∑

ℓ=1

Jℓ

rCC
ℓ

= NX · r̃T w + K (3)

with r̃ =

(

1
rCC
1

, . . . , 1
rCC

NCC

)T

and the weighting factors

w = (w1, . . . , wNCC
)T . The factor K = r̃T j, with j =

(J1, . . . , JNCC
) is a constant offset factor which is due to

the termination of the different sub-codes. Note that for

performance and complexity considerations, we do not con-

sider non-terminated and tailbiting codes in this contribution.

Minimizing LCC thus leads to the linear program

wopt = arg min
w

r̃T w (4)

subject to the (equality and inequality) constraints

C · w ≻ d + o (5)

0 ≤ wℓ ≤ 1 ∀ℓ ∈ {1, . . . , NCC} (6)

NCC
∑

ℓ=1

wℓ = 1 , (7)

The solution to this linear programming optimization problem

can be easily found using numerical methods (see, e.g., [19]).

The constraint (5) states that all elements of the vector

Cw have to be element-wise larger than the corresponding

elements of d + o (operator “≻”) and guarantees an open

decoding tunnel in the EXIT chart. An open decoding tunnel

signifies that the resulting EXIT characteristic of the irregular

code CCC
irr , obtained by weighting all the utilized NCC convo-

lutional codes with w (P sample points of CCC
irr are given by

C·w), has no intersection with the inverse SDSD characteristic

stored in d. In (5), the vector o denotes an offset vector which

is chosen such that a larger open decoding tunnel is present,

leading to better convergence properties at the receiver. In fact,

the constraint Cw ≻ d would only guarantee an infinitely

small decoding tunnel which cannot be exploited by a practical

system. By an adequately chosen o, the convergence and the

decoding complexity (which linearly scales with the number

of iterations) can be controlled. However, a penalty in the

compression performance has to be tolerated if the decoding

tunnel becomes wider, as the optimization tends to select

codes with lower rates in order to fulfill the constraints. The

constraints (6) and (7) ensure that the wℓ are valid weighting

factors.

In the case of large block lengths, NX · r̃T w ≫ K and the

effect of the termination can be neglected. However, as soon as

NX becomes smaller, the length of the compressed bit stream

considerably increases with the number of utilized codes, as

the constant additive term K = r̃T j grows with NCC. There-

fore, we propose an advanced scheme which further minimizes

the number of bits LCC after source compression. Starting

with a pool of NCC,tot codes, we try all the combinations of

1 ≤ NCC ≤ NCC,tot and select the subset which results in the
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TABLE I

UTILIZED RANDOMLY PUNCTURED CONVOLUTIONAL CODES, MOTHER

CODE WITH GENERATOR POLYNOMIAL
`

1, 17
11

´

ℓ rCC
ℓ

Psys,ℓ ℓ rCC
ℓ

Psys,ℓ

1 1.25 0.91 7 3.5 0.98
2 1.5 0.93 8 4.0 0.98
3 1.75 0.93 9 5.0 0.99
4 2.0 0.94 10 6.0 0.99
5 2.5 0.94 11 8.0 0.99
6 3.0 0.96 12 10.0 0.99

smallest number of bits LCC. For a given NCC, we first select

one of the
(

NCC,tot

NCC

)

subsets of NCC codes and try to perform

the optimization using this limited space of codes. If the linear

program (4) can be solved and if the resulting LCC evaluated

using (3) is smaller than all previously computed values, we

retain this subset of codes. This means that a total number

of
∑NCC,tot

NCC=1

(

NCC,tot

NCC

)

= 2NCC,tot − 1 linear programs have to be

solved (full search). This is only practical if the number NCC,tot

is relatively small.

IV. EXAMPLES

We demonstrate the concept of near-lossless source coding

using irregular index assignments by two simulation examples.

For the simulation examples, we assume a simplified model in

order to generate reproducible results. A source coder extracts

KS parameters from an arbitrary (audiovisual) signal. The

KS parameters are be modeled as i.i.d. Gaussian processes

with zero mean and unit variance. We further assume that the

parameters originate from a Markov chain with correlation

coefficient ρ =
Cov(Uκ,t,Uκ,t−1)

Var(Uκ,t) Var(Uκ,t−1)
= Cov(Uκ,t, Uκ,t−1).

This means that the source encoder removes all correlation

within one frame (Cov(Uκ,t, Uκ−1,t) = 0, so-called intra-

frame redundancy) but due to the computational complexity

limitations and the limited frame length, leaves correlation

between consecutive frames ut−1 and ut. This source setup

can be used for instance to model the behaviour of transform

coefficients in transform-based audio codecs. One example

of such a codec, where the proposed algorithm has been

successfully utilized is the FlexCode source coder [20], [21].

Another example where this model can be applied are the

gains of speech and audio codecs.

The parameters are quantized using a constrained entropy

scalar quantizer (CESQ) [22]. In the case of CESQ, the

optimum scalar quantizer is a uniform scalar quantizer with

step size ss [23] which is followed by an entropy encoder

(like Huffman or arithmetic codes). In our proposal, the

system consisting of redundant index assignment, interleaver

and irregular inner channel encoder constitutes the entropy

encoder.

The parameters of the utilized inner randomly punctured

codes according to [14] are summarized in Table I. They are

all based on a recursive systematic mother code of rate 1
2

with octal generator polynomials (1, 11
17 ) and Jℓ = 3, ∀ℓ ∈

{1, . . . , NCC,tot}.

A. Error-free channel: Mere Compression

In the first example, we assume that no channel errors

occur, i.e., n = 0 in Fig. 1 (or Es/N0 → ∞, respectively).
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Fig. 3. EXIT chart example for irregular inner codes with ρ = 0 for
Es/N0 → ∞

First, we also assume that the correlation of the source is not

exploited by the soft decision source decoder. This means

that the SDSD assumes a source of KS i.i.d. uncorrelated

Gaussian parameters. As a typical example, the quantizer step

size is set to ss = 0.5 and the number of quantization levels

is fixed to Q = 16, leading to M = 4 bit. The resulting source

entropy is H(U) = 3.0615 bit which is the lower bound for

a reliable transmission/storage of the given setup. Using the

above codes and the redundant index assignment consisting

of a single parity bit described in Sec. II, the optimization

guideline presented in Sec. III leads to the following results:

the set of NCC = 3 codes with ℓ ∈ {1; 2; 6} is utilized with

weighting factors w1 = 0.1223, w2 = 0.6967, w6 = 0.1810.

Figure 3 depicts the resulting EXIT chart optimization. The

characteristics CCC
ℓ of the NCC,tot = 12 codes are depicted as

gray dashed lines in the figure. The EXIT characteristic CSDSD

of the SDSD which only exploits AK0 knowledge (i.e., the

Gaussian distribution of the source) is also given in Fig. 3. We

denote the SDSD using only the distribution of the signal by

AK0-SDSD. The EXIT characteristic of the optimized inner

code, given by CCC
irr = w1C

CC
1 +w2C

CC
2 +w6C

CC
6 is also given in

Fig. 3: it can be seen that a narrow decoding tunnel is present

between CCC
irr and CSDSD which allows the reconstruction at the

transmitter using a high number of iterations. For KS = 256
and the given exemplary setup, we can achieve a number of

bits per parameter LCC/KS ≈ 3.1349 bit. Compared to the

entropy of the source, the difference amounts to LCC/KS −
H(U) = 0.0734 bit. Our previous approach presented in [6],

which optimizes the outer code component (i.e., the redun-

dant index assignment) leads to 3.1527 bit/parameter which is

slightly worse.

In the context of CESQ, the entropy encoder compresses

the data on a frame-by-frame basis. In speech and audio

codecs employed in a real-time conversational scenario a low

end-to-end delay is mandatory. Often such codecs operate on

frames of 20 ms length. Usually, the entropy code does not

exploit eventual dependencies between consecutive frames.

For instance, an arithmetic code uses the distribution of the

different parameters for determining its probability intervals

in the context of CESQ but usually does not make use of any
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Fig. 4. EXIT chart example for irregular inner codes with ρ = 0.9 for
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information from the previous frame. The main advantage of

SDSD is that it can easily exploit the inter-frame redundancies

at the receiver without increasing the system delay [3]. If the

correlation coefficient ρ > 0, this a priori knowledge of first

order (AK1) is exploited within the SDSD (therefore denoted

as AK1-SDSD) and leads to a different EXIT characteristic

CSDSD
ρ . For ρ = 0.9 this characteristic is depicted in Fig. 4

together with the characteristics of the NCC,tot inner codes

which remain unchanged compared to Fig. 3.

The optimization using the AK1-SDSD yields codes of

higher rates and realizes therefore a better compression. The

codes selected by the optimization are the codes with ℓ ∈
{2; 5; 7} (NCC = 3). If the total number of bits is evaluated

using (3), we get LCC/KS = 2.387 bit < H(U). However, the

bound in this case is the conditional entropy H(Ut|Ut−1) =
1.9784 bit. Note that the system AK1-SDSD still has a gap of

≈ 0.4 bit to the conditional entropy which is due to the fact

that the AK1-SDSD does not fully exploit the Markov property

and only utilizes information from the previous frame but not

from future frames due to delay constraints. An AK1-SDSD

with full forward-backward decoding would even show better

performance (compare [6], where the full forward-backward

algorithm has been employed and a performance close to the

conditional entropy has been obtained). However, in order to

have a system comparable with existing approaches in terms

of system delay, we did not use the full forward-backward

decoder in this contribution. Further note that the transmitter

does not require any changes apart from a different code

selection. No additional delay is introduced and the only

changes are being made at the receiving side by employing

a different SDSD algorithm.

B. AWGN Channel: Error-Resilient Compression

A major advantage of the presented approach is its resilience

against transmission errors. For instance, if additive Gaussian

noise is present on the channel, the characteristics of the inner

codes CCC
ℓ are modified because the amount of information

present at the channel output is decreased by the noise. The

EXIT chart results for a channel quality Es/N0 = 0 dB are

given in Fig. 5. It can be clearly seen that the amount of

extrinsic information I
[ext]
CD generated by the different sub-
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Fig. 5. EXIT chart example for irregular inner codes with ρ = 0.9 for
Es/N0 = 0 dB

decoders is smaller than in the error-free case. Again, the

optimizer selects NCC = 3 codes (ℓ ∈ {1; 3; 5}) in this

setup. The number of bits per parameter, computed using

(3), amounts to 3.3270 bit which is only slightly higher than

H(U). This means that the given system realizes a joint

source-channel coding approach that minimizes the number of

transmitted bits at a channel quality of Es/N0 = 0 dB while

maintaining decodability.

C. Simulation Example

Figure 6 shows simulation results for the optimization from

Fig. 5. The goal was to realize a system that achieves maxi-

mum compression at Es/N0 = 0 dB and also works for better

channel qualities. The offset vector o in the constraint (5)

was set to 0.005 · 1P×1 leading to a narrow decoding tunnel.

Note that in all previous EXIT charts the offset vector has

been chosen to o = 0. The simulations were performed for

KS = 256 which is a typical value for transforms employed in

audio and image codecs and for KS = 8192. The upper part

of Fig. 6 depicts the Parameter SNR (
E{U2}

E{(U−Û)2}
) between

original and estimated parameters. The system presented in [6]

which uses an optimized irregular index assignment and a

fixed rate-2 inner convolutional code serves as a reference.

Both systems employ 30 ISCD iterations at the receiver and

the AK1-SDSD algorithm which only considers the previous

frame and no information from future frames. The number of

bits per parameter is approximately identical for both systems

and amounts to ≈ 3.40 bit for this setup. This value is slightly

higher than the value given above due to the non-zero offset

vector o.

It can be clearly seen from Fig. 6 that the proposed system

outperforms the reference which has been optimized for the

same channel quality. This can be explained by the curved

EXIT decoding tunnel of the reference system (see Fig. 2

in [6]) compared to the “straight” tunnel in Fig. 5. Due to the

limited block length, the iterative decoder has more difficulties

to pass the “curved” decoding tunnel than the “straight”

tunnel. If the number of parameters per frame is increased

to KS = 8192, the waterfall behavior is more pronounced

and the performance difference becomes smaller. In fact, for

KS = 8192, the reference system even slightly outperforms
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Fig. 6. Simulation results (parameter SNR and symbol error rate) in the
presence of channel noise, 30 decoding iterations

the proposed setup in terms of a lower error-floor. The better

waterfall behavior is expected and can be explained by the

increased block length. The lower part of Fig. 6 shows the

symbol error rate (SER) between the quantized parameters ūκ

and their estimates ûκ and confirms the results.

V. CONCLUSIONS

In this contribution we have shown that a joint source-

channel coding approach with irregular inner codes and it-

erative decoding can be effectively utilized for near-lossless

error resilient Turbo source coding. In a source coding setup,

the number of transmitted bits shall be minimized. Minimizing

the number of bits leads to a linear programming optimization

problem. The solution of this optimization is an irregular inner

code, which is realized using randomly punctured convolu-

tional codes. The advantage of these codes is that their EXIT

characteristics can easily be computed from the characteristic

of a common mother code. The other advantage over the

system previously presented in [6] is that changes of the

source properties can easily be taken into account without

recomputing a vast number of EXIT characteristics required

for optimizing the irregular index assignment.

The performance of the proposed system has been evaluated

based on two simulation examples. In a first example, an

error-free channel has been assumed and it has been shown

that our system is able to compress the given source with a

performance close to the source entropy. Furthermore, we have

shown how the inter-frame redundancies of the source can be

taken into account to further boost the system performance. In

a second simulation example, we have shown the abilities of

the system in the presence of channel noise. The simulation

results indicate that the optimization goal is reached with a

practical system and that the reference system can even be

outperformed for small block lengths.
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