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Abstract

This paper shows the application of soft-decision source
decoding (SDSD) to correlated speech codec parameters
given by multiple description scalar quantization. In the
presence of additive white Gaussian noise on the trans-
mission link, the reconstruction quality can be largely im-
proved by the application of SDSD. Furthermore, if the
transmission link is characterized by packet losses only,
the presented approach improves the reconstruction qual-
ity whenever packet losses occur. The proposed approach
is compared to a well-known soft-decision approach based
on cross-decoding.

1 Introduction

Multiple Description Coding (MDC) [1, 2] is a tool to
generate two (or more) descriptions of a signal which are
then independently transmitted over a network with possi-
ble packet losses. If all descriptions are correctly received,
the signal can be reconstructed with the best possible qual-
ity. If one or more descriptions of the signal are missing
due to packet losses, the signal can still be reconstructed,
however, with degraded overall quality.

Multiple description coding can also be used for a more
general kind of hierarchical coding: due to bottlenecks in
the network, parts of the packets may be rejected, thus
allowing a flexible rate adaptation. One example of a
speech and audio codec employing MDC is the FlexCode
source coder [3, 4]. Multiple description codes are gener-
ally quantified by their index assignment [1] which maps
a central code book index to two or more side code book
indices. The set of side code book indices form the indi-
vidual descriptions.

Residual redundancy of source codec parameters such
as scale factors or predictor coefficients for speech, audio,
and video signals, occurs due to imperfect source encod-
ing resulting for instance from delay and complexity con-
straints. This redundancy can be utilized by a soft decision
source decoder (SDSD) [5] at the receiver to improve the
reconstruction quality. Iterative source-channel decoding
(ISCD) [6, 7] is an extension of SDSD and exchanges in an
iterative process so-called extrinsic reliabilities between a
SDSD and a channel decoder.

Approaches to utilize soft information in the decod-
ing of multiple descriptions can be found in, e.g., [8], [9].
The concept presented in [8] uses the inherent redundancy
of multiple descriptions to improve the decoding perfor-
mance. This approach is then also extended to realize
a Turbo-like transmission scheme with iterative decoding
in [8].

In this paper, we apply SDSD with minimum mean
square error (MMSE) estimation to multiple descriptions.
With SDSD, we can inherently exploit the redundancy in
the quantized parameters as well as the redundancy con-
tained in the multiple description coding scheme. Besides
improving the quality in the pure-noise case (i.e., if no

packets are lost), we show that our presented approach is
also able to improve the quality in the packet-loss case by
exploiting the correlation between consecutive frames.

2 System Model

In Fig. 1 the baseband model of the considered transmis-
sion system with non-iterative decoding is depicted. A
frame ut consisting of KS unquantized codec parameters
ut,k is quantized using a Q-level scalar quantizer Q to
vt,k = Q(ut,k) with vt,k ∈ V = {v̄1; . . . ; v̄Q}. The set V
denotes the central quantizer code book. To each quantized
parameter vt,k, a quantizer index it,k = I(vt,k) is assigned
with it,k ∈ {1; . . . ;Q}. It holds that vt,k = v̄it,k

. The mul-

tiple description index assignment (MDIA) generates two
descriptions of the quantizer indices it,k according to the
method proposed in [1]. The resulting indices are denoted

by i
[j]
t,k = I [j](it,k), with j ∈ {0;1} indicating the descrip-

tion. Furthermore, we introduce the side code books V[j]

of size Q[j] defined according to [1].

To each i
[j]
t,k, a bit pattern b

[j]
t,k = B[j](i

[j]
t,k), consist-

ing of M [j] bits, is assigned. The bit patterns are selected

from a set B[j] = {b̄
[j]
1 ; . . . ; b̄

[j]

B[j]} with B[j] = Q[j] being

the number of distinct bit patterns per description j. All
bit patterns of a description are grouped to the bit stream

x
[j]
t = (b

[j]
t,1, . . . ,b

[j]
t,KS

). The single descriptions are in-

terleaved (interleaver π) and optionally channel encoded
prior to transmission over the channel. Each description
is independently transmitted over a packet-erasure AWGN
channel. The single bipolar values of the encoded vec-

tor y[j] (each with symbol energy Es = 1) may be subject
to AWGN with power spectral density σ2

n = N0/2. Ad-

ditionally, each complete packet y[j] may be erased with
probability ǫ (indicated by the switches in Fig. 1). This
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Figure 1: System model of the considered multiple de-
scription transmission with non-iterative decoding
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channel models, e.g., the packet transmission over a wire-
less link: due to network congestion or synchronization
issues, the complete packet may be lost. If the packet is
received, the receiver noise is modelled by AWGN. At the
receiver, channel decoding (if necessary) is performed us-
ing a soft-input, soft-output (SISO) channel decoder (e.g.,
the BCJR algorithm [10] for block or convolutional codes),
de-interleaved and fed to the joint soft decision estimator.
Note that if a description is lost, no channel-related infor-
mation for the description is available.

Usually, due to numerical reasons, the channel de-
coder is described using L-values [11]. After transmission
over an AWGN channel, the received L-value is given by

L(z
[j]
κ |y

[j]
κ ) = 2

σ2
n

z
[j]
κ . If an erasure has occurred, all L-

values in the description are set to zero, i.e, L(z
[j]
κ |y

[j]
κ ) =

0. The channel decoder generates a posteriori L-values
according to [10, 11] which, after deinterleaving, are de-

noted as L
[ap]
CD (x

[j]
k ), with x

[j]
k denoting the k’th bit of the

j’th description x[j]. If the bit stream is described using in-

dividual bit patterns, the notation L
[ap]
CD (b

[j]
t,k,m) denotes the

L-value of the m’th bit of bit pattern b
[j]
t,k at the channel

decoding output.

3 MMSE Estimation of Multiple De-

scriptions

The multiple description quantizer consists of a single fine-
resolution scalar quantizer, called central quantizer, and a
mapping of a quantization index obtained by the central
quantizer to a set of side indices, which are called descrip-
tions. Each of these descriptions is transmitted indepen-
dently. As there exists a one-to-one mapping between the
central code book index and bit patterns in each descrip-
tion, we can almost directly incorporate the framework
of [5] to MDC.

The first step of the soft decision source decoder
(SDSD) consists in generating the channel-related proba-
bilities

γ
[j]
t,k(ℓ) =

M [j]
∏

m=1

1

1+exp
(

−(1− b̄
[j]
ℓ,m)L

[ap]
CD (b

[j]
t,k,m)

) (1)

with b̄
[j]
ℓ,m denoting the m’th bit of the bit pattern b̄

[j]
ℓ ∈

B
[j]. Equation (1) has to be evaluated for each ℓ ∈

{1; . . . ;B[j]} and each description j ∈ {0;1}. If a de-
scription j has been lost due to a packet erasure, the

factors γ
[j]
t,k(ℓ) are determined as γ

[j]
t,k(ℓ) = 1

B[j] , ∀ℓ ∈

{1; . . . ;B[j]}. If no AWGN is present on the channel and

the considered description is not lost, then γ
[j]
t,k(ℓ) ∈ {0;1}

with γ
[j]
t,k(ℓ) = 1, if the ℓ’th quantizer index has been trans-

mitted (and thus received) and γ
[j]
t,k(ℓ) = 0 otherwise.

The factors γ
[j]
t,k(ℓ) form the basis of all consid-

ered soft decoding algorithms for multiple descriptions.
The approach of [8] for example refines (1) with cross-
information from the description 1 − j. For a detailed de-
scription of the algorithm, we refer to [8].

The easiest estimator is the so-called NAK estimator
which does not make use of any a priori knowledge of the

source codec parameters. The NAK estimator is given by

û
[NAK]
t,k = C1

Q
∑

q=1

v̄q ·γ
[1]
t,k(I [1](q))γ

[2]
t,k(I [2](q)) (2)

with C1 being a normalization constant such that

C1
∑Q

q=1 γ
[1]
t,k(I [1](q))γ

[2]
t,k(I [2](q)) = 1. Equation (2)

makes use of the fact that there is a one-to-one correspon-

dence between it,k and (i
[1]
t,k, i

[2]
t,k) and that both descrip-

tions are transmitted independently. Note that the factors

γ
[1]
t,k and γ

[2]
t,k can be multiplied as both descriptions are

transmitted over independent channels. If only a single de-
scription j is received, the estimator (2) changes to

û
[NAK]
t,k

∣

∣

∣

∣only desc. j
received

= C2

Q[j]
∑

q=1

v̄
[j]
q ·γ

[j]
t,k(q) . (3)

If both packets are erased, û
[NAK]
t,k = 1

Q

∑Q
q=1 v̄q , i.e., the

mean of the central code book is utilized.
If a priori knowledge on parameter level is available, it

can be incorporated into the estimation process, similar as
in [5]. For instance, if a priori knowledge of zeroth order
(AK0) is available, i.e., probabilities PV (vt,k) or PI(it,k)
equivalently, the estimator modifies to

û
[AK0]
t,k = C3

Q
∑

q=1

v̄q ·PI(q)γ
[1]
t,k(I [1](q))γ

[2]
t,k(I [2](q)) . (4)

Again, the normalization constant C3 ensures that

C3
∑Q

q=1 PI(q)γ
[1]
t,k(I [1](q))γ

[2]
t,k(I [2](q)) = 1. If a packet

loss occurs, i.e., only description j is available at the re-
ceiver, the estimator using the central code book is still

utilized, with γ
[1−j]
t,k (ℓ) = 1

B[1−j] . If both descriptions are

lost, the estimator selects the most probable central quan-
tizer index according to its distribution PI(q). It has been
found that this estimator leads to better results in erasure
situations than the estimator utilizing the side code books.
If both descriptions are lost, the mean of the central code
book is automatically selected using this approach.

It has been found in, e.g., [5], that tremendous gains
are achievable if a priori knowledge of first order (AK1) is
exploited by the estimator. In this contribution, we assume
that the source encoder removes all intra-frame redundan-
cies, i.e., PIk|Ik−1

(it,k|it,k−1) = PI(it,k), but there is still

exploitable inter-frame correlation PIt|It−1
(it,k|it−1,k).

The estimator is given by

û
[AK1]
t,k = C4

Q
∑

q=1

v̄q ·αt,k(q) (5)

with

αt,k(q) =

γ
[1]
t,k(I [1](q))γ

[2]
t,k(I [2](q))

Q
∑

q̃=1

αt−1,k(q̃)PIt|It−1
(q|q̃) .

(6)
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The normalization constant C4 in (5) ensures that

C4
∑Q

q=1 αt,k(q) = 1. The variable αt,k(q) (which cor-

responds to the a posteriori probability of quantizer index
q, see [5]) is obtained by the forward recursion (6) with
the initialization α0,k(q) = PI(q). Again, in the case of a

packet loss of description j, the corresponding values γ
[j]
t,k

are assumed to be equiprobable. In this case, if both de-
scriptions are lost, then although no information from the

channel is available (γ
[1]
t,k(q) = 1

B[1] , γ
[2]
t,k(q) = 1

B[2] ), the

information from the preceding frames can be exploited
and the estimator is given by

û
[AK1]
t,k

∣

∣

∣

∣

both
lost

= C5

Q
∑

q=1

v̄q ·

Q
∑

q̃=1

αt−1,k(q̃)PIt|It−1
(q|q̃) .

The factor αt,k(q) is updated using (6) with constant

γ
[1]
t,k(q) and γ

[2]
t,k(q). As the estimators are similar to those

in [5], extrinsic information for the use in an iterative,
Turbo-like receiver can easily be generated using the ap-
proaches in [6, 7]. The iterative decoding of multiple de-
scriptions using this receiver is however not in the scope of
this paper.

4 Simulation Examples

The capabilities of the proposed receiver shall be exam-
ined by a simulation example. We use the following system
setup: A source emits KS = 10 i.i.d. parameters (Gaussian
distribution) which are correlated over time with correla-
tion coefficient ρ = 0.9. The parameters are said to pos-
sess inter-frame correlation, i.e., PIt|It−1

(it,k|it−1,k) 6=

PIt
(it,k), ∀k ∈ {1; . . . ;KS}. The correlation is modelled

as inter-frame Markov source of first order. This block of
parameters is quantized in this example using a Q = 22
level scalar quantizer. The multiple description index as-
signment is based on a 8×8 matrix with a linear 3-diagonal
index assignment according to Figure 2 resulting in 6 bit
per parameter (3 gray mapped bits per description). The
central and side code books are generated according to the
guidelines in [1]. No channel coding is used in this first
example.

Example: If a parameter is quantized to the central

quantizer index it,k = 14, then the bit pattern b̄
[1]
5 = (1 1 0)

is selected for the first description while the bit pattern

b̄
[2]
6 = (1 1 1) is selected for the second description.

Figure 3 depicts the parameter SNR between the orig-
inal parameters u and the reconstructed parameters û. It
can be seen that the cross decoding method presented in
[8] already considerably improves the conventional hard
bit table lookup decoding. The proposed SDSD-based es-
timation method exploiting either no a priori knowledge
(NAK), 0th order a priori knowledge (AK0, parameter dis-
tribution) or 1st order knowledge (AK1, parameter inter-
frame correlation) leads to significant improvements. In
the case of a packet loss probability of ǫ = 0.05, it can be
seen that the application of the AK1 MMSE estimator can
also improve the overall signal quality in the noiseless case
(for Es/N0 → ∞) ≈ 1.5 dB. This effect is due to the inter-
frame correlation of the parameters within a frame which
is exploited by the AK1 MMSE estimator.

In a second experiment, KS = 30 i.i.d parameters
which are inter-frame correlated with correlation coeffi-

cient ρ = 0.8 are grouped in a block. The same multiple de-
scription index assignment as above (see Fig. 2) is utilized.
Additionally, a rate 1/2 convolutional code of constraint
length 7 with (octal) generator polynomials (133,171)8

is employed (e.g. [12]). The convolutional code is de-
coded at the receiver using a LogMAP decoder [11]. The
simulation results are depicted in Fig. 4 for a packet loss
rate of ǫ = 0.05. In order to account for the additional
channel coding, Eb/N0 instead of Es/N0 is utilized, with
Eb/N0 = Es/N0 + 3.01dB in case of rate 1/2 channel
coding. It can be seen that all proposed MMSE estima-
tors outperform the hard decision decoder and the cross-
decoding approach of [8]. Again, the AK1-MMSE algo-
rithm, which exploits the inter-frame correlation of the pa-
rameters, shows a superior quality than all other algorithms
for all channel qualities. This is again due to the better es-
timation of parameters in the packet loss case.

Finally, in a third experiment, the gains by AK1 MMSE
estimation in a pure packet loss scenario (i.e. no AWGN or
Es/N0 → ∞, respectively) are quantified. Again, a block
consists of KS = 10 i.i.d parameters which possess inter-
frame correlation. It has already been shown in Figs. 3
and 4 that in a pure packet-loss case, the AK1 MMSE es-
timator can improve the overall reconstruction quality by
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Figure 2: Multiple description index assignment and bit
mappings used in the simulation example.
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exploiting the inter-frame correlation of the source codec
parameters. Figure 5 depicts the achievable gain in terms
of parameter SNR by employing AK1 MMSE decoding
instead of conventional hard bit decoding (or any other
MMSE estimator not exploiting the inter-frame correla-
tion).

It can be seen that the improvement of the parameter
SNR increases with the correlation coefficient, as can be
expected. Furthermore, the gain is larger for higher packet
loss rates. If no packet losses occur, the decoding result
of the AK1-MMSE algorithm is identical to the result of
the hard bit decoding algorithm (for the non-AWGN case).
If only a small number of packet losses occur, there are
only some parameters whose quality can be improved by
AK1-MMSE decoding. Thus, a higher number of packet
losses increases the occurrence of those situations where
an improvement is obtained.

5 Conclusions

In this contribution, we have shown how conditional
MMSE estimation of multiple descriptions, exploiting dif-
ferent amounts of residual redundancy, can lead to signif-

icant quality improvements in the case of AWGN channel
noise. Additionally, we have shown that if packet losses
occur and inter-frame correlation is present, the overall sig-
nal quality can be ameliorated by taking into account this
correlation between the parameters of consecutive frames
within the estimator. It has been shown that this gain be-
comes larger with increasing packet loss rates and depends,
as expected, on the correlation of the parameters. Fur-
thermore, we have shown that the proposed estimators can
also successfully be applied to a system employing chan-
nel coding. An example using a convolutional code has
been presented, although different channel codes, such as
LDPC codes [13] can be utilized.
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