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Abstract—Audio-visual source encoders for digital mobile
communications extract parameters that – due to delay and
complexity constraints – exhibit some residual redundancy. This
residual redundancy can be exploited by iterative source-channel
decoding (ISCD) to improve the robustness against transmission
noise by performing soft parameter detection as part of the
decoding process. Systems employing ISCD at the receiving end
often exhibit an observable error floor. While this error floor
can be tolerated in some cases, it is often desirable to perfectly
reconstruct the source codec parameters. In this paper, we explain
the reasons for the error floor and propose two solutions for
realizing ISCD systems with optimized error floor performance
while maintaining the desired near-capacity waterfall behavior.
All approaches aim at optimizing the distance properties of
the (redundant) mapping of bit patterns to the source codec
parameters. In some cases, especially if small quantizer code
books are employed, good mappings cannot be found – in this
case, the novel multi-dimensional bit mapping allows to reduce
the error floor after decoding.

Index Terms—Iterative Source-Channel Decoding (ISCD), Soft
Decision Source Decoding (SDSD), Fixed-length codes

I. I NTRODUCTION

SHANNON’s source-channel separation theorem [1] states
that if the minimum achievable source coding rate of

a given source is below the channel capacity, the source
can be reliably transmitted over the channel by performing
appropriate encoding and decoding operations: therein, source
and channel coding can be separated. The original theorem
from Shannon holds for stationary and ergodic sources and
channels and for asymptotically large block lengths. Shannon
already showed the sub-optimality of the separation theorem
for multi-user systems in [2].

But also in more “traditional” cases, the constraints of
the original separation theorem [1] are almost never fulfilled.
In state-of-the-art audio, image and video coding standards,
delay and computational complexity restrictions imply theuse
of short block lengths. Some terms of residual redundancy
typically remain in the source codec output parameters (e.g.,
scale factors or predictor coefficients) due to these constraints
and can be exploited at the receiver of a noisy communication
system in order to increase the error robustness, e.g., [3],[4].

For these reasons, the joint study of source and channel
coding needs to be considered for realizing transmission
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systems with good performance. Several techniques for joint
source-channel coding have been introduced. The variety of
these approaches can be divided into mainly two classes.
In the first class, channel properties (like bit error rates)
are utilized throughout the design of robust source encoding
schemes, e.g., pseudo Gray coding [5], channel optimized
vector quantization [6], source optimized channel codes [7],
or the selection of the optimum rate distribution between
source and channel coding [8]. In the second class, source
statistics (capturing the natural residual source redundancy)
are exploited throughout channel (de)coding. Famous exam-
ples include source controlled channel decoding [9], and its
application to speech coding [10], [11].

Iterative Source-Channel Decoding(ISCD) [12]–[15] can
be considered as an advancement of source controlled chan-
nel decoding [9], where in each decoding step the source
statistics are iteratively refined in a Turbo-like process.The
a priori knowledge on the residual redundancy, e.g., non-
uniform probability distribution or auto-correlation, isutilized
by a derivative of aSoft Decision Source Decoder(SDSD) [4]
which exchanges extrinsic reliabilities with a channel decoder.
In the literature, ISCD has been applied to systems employ-
ing Variable Length Codes(VLCs) andFixed Length Codes
(FLCs). In this paper we put the focus on FLCs, which
are used in wireless systems like GSM, UMTS, and LTE
and in recent speech and audio codecs, designed for VoIP
amongst others, like G.729.1 and G.718. In fact, FLCs are a
special case of VLCs and all results given in this paper can
directly be generalized to ISCD for VLCs. An introduction
to ISCD techniques for VLCs can be found in [16], [17]. The
application of ISCD to discrete-valued sources (which can also
be source codec parameters) is highlighted in [18].

The key element of the ISCD approach is to exploit residual
redundancy which is contained in the output parameters of
the source encoder. As mentioned above, this is mostly due
to delay and computational complexity constraints. However,
a source encoder can also deliberately keep redundancy in
the signal in order to increase the error robustness. If this
redundancy is removed, for example by differential encoding,
the decoder is prone to error propagation.

EXtrinsic Information Transfer(EXIT) charts [19], [20] are
a powerful analysis tool for an easy comparison of different
system setups and for assessing the convergence performance
of ISCD. Many optimizations and performance improvements
of ISCD have been obtained by using EXIT charts, e.g., [15],
[21]–[23]. However, ISCD systems optimized using EXIT
charts show in some cases an error floor, which means that a
fraction of the parameters are still reconstructed erroneously,
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Fig. 1. Transmitter and receiver (base band model) of a transmission system utilizing ISCD.

even in good channel conditions. The error floor is mainly
influenced by the distance properties of the bit mapping in
the source encoding stage. In several source codecs, the exact
reconstruction of the parameters is indispensable for guaran-
teeing reconstruction of the source signal. The optimization of
ISCD schemes improving error floor and waterfall by means of
EXIT charts and interleaver gain analysis is discussed in [24]
in the context of VLCs with low redundancy. The case of
FLCs is also examined in [24].

The goal of this paper is to reduce the error floor of ISCD in
the context of FLCs by several means. First, it is shown how
the selection of the bit mapping influences the error floor. We
further show how the resulting loss in the waterfall region can
be compensated by the use of a low complexity inner irregular
code. In certain cases, especially if small quantizer code books
are employed, the use of such an optimized bit mapping is
not always possible. In these cases, an elegant transmitter
modification can be applied. The resulting innovativeMulti-
Dimensional Bit Mappings(MDBMs) permit to further lower
the error floor.

This paper is structured as follows: Section II introduces
the considered system model and the notation. It is shown in
Sec. III how the error floor can be considerably reduced by a
proper selection of the bit mapping while maintaining a good
waterfall performance. Section IV introduces the concept of
MDBMs and shows how they permit to lower the error floor
if small quantizer code books are employed. The equations
for SDSD are given in Appendix A, while Appendix B shows
how to computea priori probabilities in the case of MDBMs.

II. SYSTEM MODEL

Figure 1 depicts the base band system model considered
throughout this paper. At time instantt, a source encoder
extracts a frame ofNI source codec parametersut =
(ut,1, . . . , ut,NI

) out of the audio-visual source signalst.
The source codec parameters can for example be gain fac-
tors, filter coefficients, pitch values, the residual signal, or
transform coefficients of speech and audio codecs. These
parameters are assumed to be either inter-frame correlated
with correlation coefficientρ = E{Ut,kUt−1,k}/E{U

2
t,k}

or intra-frame correlated with correlation coefficientδ =

E{Ut,kUt,k−1}/E{U
2
t,k}. Note that the upper-case letterUt,k

denotes the random variable describing the source codec
parameterut,k. The frameut is quantized using aQ-level
scalar quantizerQ which maps the input parameterut,k to

a quantizer indexit,k denoting the selected entry of the
quantizer code bookV = {v̄(1), . . . , v̄(Q)} ⊂ R. In this paper,
we only consider scalar quantization in order to demonstrate
the concept, which can easily be extended to incorporate
vector quantization. All quantization indices within a frame are
grouped to a vectorit = (it,1, . . . , it,NI

). To each quantizer
index it,k selected at time instantt and positionk, a unique
bit patternbt,k ∈ B

.
= {b̄(1), . . . , b̄(Q)} ⊆ FM

2 of M bits
is assigned according to the (possibly redundant) bit mapping
functionB (with F2

.
= {0, 1}). The single bits of the bit pattern

bt,k are denoted bybt,k,µ ∈ F2, with µ ∈ {1, . . . ,M} ⊂ N1

denoting theµth entry ofbt,k. The single bits of the possible
bit patternsb̄(q) = (b̄

(q)
1 , . . . , b̄

(q)
µ , . . . , b̄

(q)
M ) are denoted by

b̄
(q)
µ . If M > log2 Q, the bit mapping is called redundant,

as it introduces artificial redundancy: more bits than actually
necessary are spent to represent a quantizer index.

The bit mapping can always be considered to be
the composite functionB = B̌ ◦ B[NB] , i.e., B(it,k) =
(

B̌ ◦ B[NB]
)

(it,k) = B̌
(

B[NB](it,k)
)

with B[NB] : I → FM [NB]

2

denoting the natural binary bit mapping.B[NB] generates
the natural binary representation of the indexit,k of length
M [NB] .

= ⌈ldQ⌉ according to B[NB] (it,k) = b
[NB]
t,k =

(

b[NB]
t,k,1, . . . , b

[NB]
t,k,M [NB]

)

with b[NB]
t,k,µ =

⌊

it,k

2M [NB]
−µ

⌋

mod 2. The

expression⌈χ⌉ denotes the smallest integer greater than or
equal toχ and ⌊χ⌋ denotes the largest integer less than or
equal toχ. Natural binary (NB) simply signifies that the binary
representation of the natural number describing the quantizer
index is used. In what follows, the superscript “[NB]” always
refers to the natural binary component of the bit mapping.

The second constituent position-dependent function of the
mapping,B̌k : FM [NB]

2 → Bk can be regarded as being a (po-
tentially non-linear) block code of raterBM = M [NB]/M .
Two prominent examples of non-redundant mapping functions
B̌k are the Gray mapping and the pseudo-Gray mapping [5].
If the bit mapping is generated using a linear block code,
the function B̌k can be described as a multiplication with
a generator matrixG[BM], i.e., bt,k = b

[NB]
t,k · G[BM], with

dimG[BM] = M [NB] × M . After the bit mapping, theNI

individual bit patternsbt,k are grouped to a bit vectorxt
.
=

(bt,1, . . . ,bt,NI
) = (xt,1, . . . , xt,ξ, . . . , xt,NX

). The size of
the bit vector isNX

.
= NIM . The single bitsxt,ξ of xt are

indexed byξ. As the bit mapping is considered to be a code,
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the rate of the bit mapping is defined by

rBM =
NI · ldQ

NX

=
ldQ

M

if ldQ=M [NB]

=
M [NB]

M
. (1)

Following the bit mapping, the bit vectorxt is permuted by
a bijective interleaver functionπ which maps the bit vector
xt of lengthNX to an (interleaved) bit vectorx′

t of the same
length. In this paper, we limit the interleaving to the present
frame xt in order not to violate a possible delay constraint
required in audio or video communication.

After interleaving, a convolutional channel encoder of rate
rCC = NX/NE encodesx′

t to yt = (yt,1, . . . , yt,η, . . . , yt,NE
)

consisting ofNE bipolar bits yt,η ∈ {±1}. In Turbo-like
systems designed for iterative decoding, the rate of the (in-
ner) channel code can berCC = 1 [20]. We restrict our
considerations to convolutional codes, as, according to [20],
[25], the inner component of a capacity-achieving serially
concatenated system should be arecursiveconvolutional code
of raterCC = 1.

On the channel, the bipolar symbols ofyt (with symbol
energyEs = 1) are subject to additive white Gaussian noise
(AWGN) with known varianceσ2

n = N0/2. After transmitting
the bipolar values over the channel, a vector of noisy values
zt = (zt,1, . . . , zt,NE

) = yt + nt is received.
The aim of ISCD is to jointly exploit the channel-related

knowledge, the artificial channel coding redundancy, the arti-
ficial redundancy possibly introduced by a redundant bit map-
ping as well as the natural residual source redundancy for ap-
proximating thea posterioriprobabilitiesP (it,k|zt, zt−1, . . .)
that are used to estimate the source codec parameters. For the
attainment of this aim, a channel decoder and aSoft Decision
Source Decoder(SDSD) iteratively exchange extrinsic infor-
mation in a Turbo-like process [12], [14]. The SDSD equations
taking into account either inter-frame (AK1-INTER) or intra-
frame correlation (AK1-INTRA) are summarized in App. A.

After a fixed numberΩ of receiver iterations, the esti-
mateda posteriori probabilities are used to reconstruct the
quantizer reproduction valueŝvt,k using MAP estimation by
v̂t,k = Q−1(̂it,k) = v̄(̂it,k), with [4]

ît,k = arg max
∀q∈I

P (It,k = q|zt, zt−1, . . .) . (2)

Finally, the estimated source parameter vectorût is ob-
tained by concatenating all the estimated valuesv̂t,k, i.e.,
ût = (v̂t,1 · · · v̂t,NI

) = (ût,1 · · · ût,κ · · · ût,NI
). Using ût, the

signal synthesis stage of the source decoder can reconstruct
the audio-visual source signalŝt. As we assume that the goal
of the ISCD stage is to perfectly reconstruct the quantizer
code book indiceŝit,k, we mostly utilize thesymbol error
rate (SER)P (Î 6= I) as performance assessment measure.

III. E RROR FLOOR REDUCTION BY DISTANCE OPTIMIZED

BIT MAPPINGS AND IRREGULAR CHANNEL CODES

The performance of the ISCD system with different soft
decision source decoders shall be compared in simulation ex-
amples. In order to show reproducible results, the source codec
parameters are modeled by a Gauss-Markov source generating
either inter-frame correlated sets of parameters (correlation

coefficientρ = 0.9) or intra-frame correlated parameters (cor-
relation coefficientδ = 0.9). Such high correlation coefficients
frequently occur in speech and audio codecs [4], [26]. The
source emitsNI = 250 parameters per frame which are
quantized by aQ = 16 level scalarLloyd-Max Quantizer
(LMQ). Bit patterns ofM = 8bits, ∀k ∈ {1, . . . , NI} are
assigned to the quantizer indices according to a repetition
coded bit mapping. The generator matrixG[BM] generates
a repetition code, i.e.,G[BM] = (I4 I4) with I4 denoting
the 4 × 4 identity matrix. This repetition coded bit mapping
has been found to result in a very good performance for
ρ = 0.9 and AK1-INTER source decoding [27] and is in
fact the optimal redundant bit mapping (in terms of decoding
convergence) that is obtained by a systematic generator matrix
G[BM] for the given setup (i.e., source properties, quantizer,
and utilized channel code). AfterS-random interleaving with
S = 15 [28], a raterCC = 1 recursive convolutional code with
memoryJ = 3 (J denotes the number of memory elements
of the shift register) and generator polynomialG[CC](D) =
1/(1 +D +D2 +D3) is applied.

In the first publications on ISCD, usually non-redundant bit
mappings were used together with raterCC < 1 convolutional
codes. However, it has been found in [21], [29], [30] that a
redundant bit mapping can lead to significant improvements.
Utilizing redundant bit mappings together withrCC = 1
codes complies with the design rules for serially concatenated
codes given in [20], [31]: The inner code shall be a recursive
convolutional code (see also [25]) of raterCC = 1 and the
outer code shall have a minimum Hamming distance≥ 2.
The repetition coded bit mapping realizes this constraint on
the Hamming distance [27]. To the best of our knowledge,
many publications focusing on the design of (redundant) bit
mappings for ISCD aim at a good convergence behavior
and often neglect the error floor performance. An error floor
analysis in the VLC case (and also applied to FLCs) is given
for example in [24].

The dashed lines in the simulation results shown in Fig. 2-a)
show that this system setup leads to a relatively high error
floor in terms of SER, although having a very good waterfall
behavior. Note that the residual source correlation can be
interpreted as an additional code of rater

[Markov]
SC , such that the

theoretical performance limit is shifted towards lower values of
Es/N0 (or Eb/N0 respectively) [32]. The error floor is due to
the properties of the (serially concatenated) ISCD transmitter:
It is mainly characterized by the interleaver sizeNX and the
Input Output Weight Enumerating Function(IOWEF) of the
component codes [31] and thus also closely related to the
minimum Hamming distancedmin of the codes.

One approach to lower the error floor is to utilize a different
outer code with better distance properties (as the repetition
code only exhibitsdmin = 2). For the given setupM [NB] = 4,
rBM = 1

2 , i.e.,M = 8, there exists only a single linear block
code of maximum Hamming distancedmin = 4 with generator
matrix G[BM] = (I4 14×4−I4) with 14×4 denoting the4× 4
all-1 matrix [33]. A similar matrix (with several systematic
repetitions) has also been used in [34].

Figure 2 shows the comparison between both mappings. By
increasing the distance by a factor of2, the error floor can be
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a) Symbol error rate.
b) EXIT charts atEs/N0 = −4 dB.

significantly lowered. In fact, a union bound analysis according
to [31] confirms that the error floor could be decreased by more
than two decades (the SER is decreased by a factor larger
than 220) and that the error floor in the case of the optimized
bit mapping has a steeper slope. This analysis has been
conducted by comparing the error rate union bounds of the
corresponding serially concatenated channel codes consisting
of a block code as outer code and the convolutional code
as inner code, assuming a uniform interleaver [31]. Details
on the error floor and an asymptotic interleaver gain analysis
in the context of ISCD with VLCs and FLCs can be found
in [24]. The simulation results depicted in Fig. 2 confirm the
expected results: The error floor is considerably decreasedand
the slope of the floor is higher, leading to considerable gains
if low SERs are targeted. Astonishingly, we have not found
an error floor in the AK1-INTRA case for SERs< 10−7 in
our simulations. Although a floor seems to manifest itself at
Es/N0 ≈ −2dB, the SER curve quickly drops afterwards.
The simulation has been carried out using a total number of
2 · 108 frames consisting ofNI = 250 indices perEs/N0

value.

The drawback of this distance-optimized bit mapping is that
the waterfall has been shifted by0.7 - 1 dB towards higher
values ofEs/N0. This can be explained by the EXIT charts
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depicted in Fig. 2-b) (for the AK1-INTER and AK1-INTRA
cases). While the characteristic of the repetition codeCSD,rep

and the channel decoder characteristicCCD have well matching
shapes, the Hamming distance optimized code exhibits a
characteristicCSD,Hamm with a distinct curvature.

One way to overcome this problem is to search for a
different raterCC = 1 inner recursive convolutional code.
The concept ofirregular bit mappings, introduced in [22],
[35], is not applied as its usage would imply a lowerdmin. In
the irregular bit mapping case, high rate mappings have to be
used together with low rate mappings. The high rate mappings
naturally have a lowerdmin and therefore lower the effective
distance. If a bit mapping withdmin = 4 should be retained, a
different inner code has to be used. An elegant way to design
a very well matching inner code is to apply the concept of
irregular codes [36] to the inner code [23], [37].

The irregular inner codes presented in [23] are based
on Randomly Punctured Recursive Systematic Convolutional
(RPRSC) codes. In this example, we show how to use simple
non-punctured codes of raterCC = 1. The codes shall be
selected such that the overall decoding complexity of the
channel decoder is reduced. Maunderet al. also employ non-
punctured raterCC = 1 codes in [37]. Due to the curved shape
of the SDSD EXIT characteristic, it can be challenging to find
well matching rate-1 recursive convolutional codes.

In order to demonstrate that a system with irregular codes
does not need to be complex, we show a very simple system
employing an inner irregular code consisting ofME = 2
convolutional codes. This encoder is depicted in the base band
model of Fig. 3. The interleaved bit vectorx′

t is partitioned
into x′

t
(1) and x′

t
(2) according tox′

t = (x′
t
(1),x′

t
(2)). The

irregular inner encoder then encodes the sub-vectorx′
t
(1)

consisting ofN (1)
X

.
= w1NX bits with the first code and the

sub-vectorx′
t
(2) consisting ofN (2)

X

.
= w2NX bits with the

second code. The goal of the inner code optimization is to
find a weight vectorw = (w1, w2)

T . In this example, the
first convolutional code is a raterCC = 1 Recursive Non-
Systematic Convolutional(RNSC) code with memoryJ = 2
and octal generatorG[CC](D) = (1 + D + D2)/(1 + D),
while the second RNSC code of raterCC = 1 has J = 1
and G[CC](D) = 1/(1 + D) (accumulator). Both codes
can be represented by a trellis diagram with either4 or 2
states, respectively. This means that the (channel decoding)
complexity is more than halved compared to theJ = 3 code
previously used. In the case of two component codes, the
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TABLE I
OPTIMUM WEIGHTSwOPT FOR THE PROPOSED IRREGULAR CODE WITH

ME = 2 COMPONENT CODES WITHG
[CC]
1 (D) = (1 +D +D2)/(1 +D)

AND G
[CC]
2 (D) = 1/(1 +D) FOR BOTHSDSDALGORITHMS

(CORRELATIONρ = 0.9 OR δ = 0.9).

SDSD Algorithm OptimizationEs/N0 w1 w2

AK1-INTER −4.2dB 0.574 0.426
AK1-INTRA −4.9dB 0.489 0.511

optimization problem can be formulated as [23], [36]

wopt = argmin
w

∥

∥CCD ·w − cSD,inv

∥

∥

2
(3)

subject to

CCD ·w > cSD,inv+ o , (4)

w1 + w2 = 1, (5)

0 ≤ wj ≤ 1, ∀j ∈ {1, . . . ,ME = 2} . (6)

The matrixCCD containsΞ sample points of both channel
decoder characteristics andcSD,inv containsΞ sample points
of the inverse SDSD characteristicC−1

SD . The offset vectoro
can control the width of the decoding tunnel. Constraint (4)
ensures an open decoding tunnel while constraints (5) and
(6) guarantee the validity of the weightsw = (w1 w2)

T .
As all component codes are of identical raterCC = 1, no
additional rate constraint needs to be considered. For a detailed
description of irregular inner codes, the reader is referred
to [23].

The optimization yields optimum weightswopt which are
summarized in Table I for the four distinct SDSD algorithms.
Note that the optimization is performed at different channel
qualities, depending on the algorithm used. Figure 4 depicts
the simulation results. Significant gains are observed compared
to the system employing the Hamming distance optimized
bit mapping and the regularJ = 3 code. The very good
waterfall performance of the reference system with repetition
code according to [27] is almost obtained, however, the error
floor is significantly reduced. Furthermore, the algorithmic
complexity of the channel decoder is also reduced, due to the
smaller number of trellis states. Note that although the error
floor is reduced compared to the first system employing the
bit mapping with the repetition code, the error floor region
starts at higher SER values compared to the system with
optimized bit mapping and the regularJ = 3 convolutional
code (SER of≈ 10−4 compared to≈ 10−5 for the AK1-
INTER case). However, due to the earlier convergence, this
defect is compensated for, such that in the AK1-INTER case,
a better SER performance is obtained in all observed channel
conditions with the system employing the irregular inner code.
In the AK1-INTRA case, an error floor can now be observed,
contrary to the case with the optimized bit mapping and the
regular convolutional code. However, the performance is still
better in this case for an SER≥ 2 · 10−7. The slightly
different error floor behavior may be due to the worse distance
properties of the irregular convolutional code compared tothe
regularJ = 3 code. A detailed analysis based on the concept
of uniform interleaving, taking into account the IOWEF of
outer and inner code, could be performed [24], [31] in order
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8-state conv. code (G[CC](D) = 1/(1 +D +D2 +D3)), Ω = 25.

to get more insights. Such an analysis is however not within
the scope of this paper.

Figure 5 additionally shows the reconstruction parameter
SNR E{U2}/E{(U − Û)2}, i.e., the SNR between original
and reconstructed source codec parameters, for all three setups
depicted in Fig. 4. The same behavior as in Fig. 4 is observed.
The maximum attainable SNR is given by the quantizer and
amounts to20.22dB for the given settings. Note that there is
no straightforward relation between SER and reconstruction
SNR, if MAP estimation according to (2) is performed. A
single symbol error can either have no influence at all on
the parameter SNR (if the original parameter had a value
corresponding to the quantizer decision boundary and the
symbol error leads to the quantizer reproduction level with
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the same distortion) or a very high influence (if the distortion
between original and erroneously reconstructed parameteris
maximized). If the symbol error rate is small enough, the re-
construction SNR difference is however almost not noticeable.
Our presented approach with bit mappings based on linear
block codes does not aim at maximizing the reconstruction
SNR in the error floor. Such an optimization should map
adjacent quantizer code book entries to code words with low
Hamming distance, as these are more likely in error, taking
also into account the (possibly unequal) parameter distribution
and the parameter correlation. Such an optimization is not
within the scope of this paper, where we aim at minimizing
the symbol error rate, which is necessary if, for instance,
source codecs are employed that require a certain residual SER
or even the error-free reconstruction of certain parameters.
Furthermore, the utilized concept based on block coded bit
mappings permits one to implement an easy stopping crite-
rion [22]. Approaches optimizing the bit mapping with respect
to the reconstruction SNR are presented, e.g., in [38], [39].
Further note that if a maximization of the reconstruction SNR
is targeted, the MAP estimation of the parameters accordingto
(2) should be replaced by an MMSE estimation, maximizing
the reconstruction SNR. The MMSE estimation rule is given
by [4]

v̂t,k =

Q
∑

q=1

v̄(q) · P (It,k = q|zt, zt−1, . . .) . (7)

In some applications, the SDSD EXIT characteristics may
vary from frame to frame due to the instationarity of the
source, such that a re-optimization of the channel code is
required on a frame-by-frame basis. In [36], an efficient
realization of the optimization has been presented. However,
even the simple basic approach of [36] is sufficient, if only two
codes are used. The optimum vectorw′ fulfilling constraint
(5) is found by [36]

w′ = w0−
11×2w0 − 1

11×2

(

CT
CDCCD

)−1
12×1

(

CT
CDCCD

)−1
12×1 (8)

with
w0 =

(

CT
CDCCD

)−1
CT

CDcSD,inv (9)

denoting the optimum solution of the unconstrained prob-
lem (3). 11×2 denotes the two-dimensional row vector con-
taining all ones. Note that only matrices of maximum size
2× 2 need to be inverted in (8) and (9) thus leading to a very
low computational complexity of the optimization.

Usingw′, which only fulfills the constraint (5), the optimum
solution can be found by a steepest descent approach [40]
by exploiting the fact that ∂

∂w
‖CCDw − cSD,inv‖2 =

2(CCDw− cSD,inv) [36]. The steepest descent approach is
an iterative algorithm, where in each iteration the gradient
(multiplied with a small enough step size) is subtracted from
w′. In the present case, the gradient∂

∂w
‖CCDw − cSD,inv‖2

as well as the gradients corresponding to the (convex) con-
straint (6) need to be considered. The resulting weights are
subsequently used asw0 in (8) to compute a neww′ for the
next iteration. The optimum vectorwopt is either obtained after

a fixed number of iterations or if the frame-to-frame variation
of ‖CCDw − cSD,inv‖2 is sufficiently small.

IV. ERROR FLOOR REDUCTION BY MULTI -DIMENSIONAL

BIT MAPPINGS

Increasing the Hamming distance of the redundant bit
mapping is not always possible, especially if the number of
quantization levelsQ is small. The Hamming distance of the
bit mapping is upper bounded by the Singleton bound with
dmin ≤ M − ldQ + 1 (see, e.g., [41]). IfldQ = M [NB] ,
then the Singleton bound can also be expressed asdmin ≤
M −M [NB] +1 = 1+M [NB]( 1

rBM
− 1). For example, ifQ = 4

(M [NB] = 2) and rBM = 1/2, dmin is bounded bydmin ≤ 3.
However, linear block codes overF2 of size2×4 only achieve
dmin ≤ 2.

In order to achieve higher distancesdmin without modifying
the raterBM andQ, a different approach has to be considered.
Following the Singleton bound with constantrBM , increasing
dmin results in larger codes. Unfortunately, the size of the
code is limited byQ. In order to be able to utilize larger
codes, Multi-Dimensional Bit Mappings(MDBMs), which
group several quantizer indices to onesuper indexand utilize
a larger code as redundant bit mapping, can be used. This
larger code allows a larger Hamming distancedmin and thus
results in a lower error floor.

The MDBM approach is similar to the concept of
multi-dimensional mappings, originally considered for trellis-
coded modulation [42] and later applied among others to
Bit-Interleaved Coded Modulation with Iterative Decoding
(BICM-ID) [43], [44]. The application of MDBMs is straight-
forward at the transmitter side:Ψ consecutive quantizer in-
dices it,k, . . . , it,k+Ψ−1 are grouped to a super indexi⋆t,k′ ,
k′ = ⌈k/Ψ⌉ with

i⋆t,k′ = 1 +

Ψ
∑

j=1

(

it,(k′−1)Ψ+j − 1
)

QΨ−j (10)

and i⋆t,k′ ∈ I⋆
.
= {1, . . . , QΨ}. A frame then contains a total

number ofN⋆
I

.
= ⌈NI/Ψ⌉ super indices. To the super index

i⋆t,k′ , the natural binary representationb[NB]⋆
t,k′ consisting of

M [NB]⋆ .
= Ψ·M [NB] bits is assigned, followed by the (possibly)

redundant part of the bit mapping. After bit mapping,N⋆
I

super bit patternsb⋆
t,k′ , k′ ∈ {1, . . . , N⋆

I } of M⋆ bits result.
As in the one-dimensional case,b⋆

t,k′ ∈ B⋆ ⊆ FM⋆

2 , with

B⋆ .
= {b̄(1)⋆, . . . , b̄(QΨ)⋆}. Because the raterBM of the

bit mapping is constrained to a fixed value, the condition
NIM = N⋆

IM
⋆ has to hold.

Thus, choosing MDBMs with dimensionsΨ > 1 permits
the use of a longer code, and thus to (theoretically) increase
the Hamming distance of the outer component code in the
serially concatenated system [41].

Finally note that using MDBMs together with scalar quan-
tizers (Π = 1) can also be interpreted as usingΠ = Ψ dimen-
sional vector quantization together with (one-dimensional) bit
mappings. The (separable) code book of this resulting vector
quantizer is composed of the original scalar code book in each
dimension. However, as it is often not possible to change the
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quantizer (as the source codec is given and fixed), MDBMs
have to be used for achieving higher distancesdmin of the
outer code.

A. Receiver Modifications

In order to be able to decode MDBMs, the SDSD has
to be modified accordingly. The different kinds of decoding
algorithms have to be considered separately, however, the first
steps are common to all four algorithms. The factorsθt,k(q)

andθ[ext]\m
t,k (q) given by (15) and (16) have to be replaced by

θ⋆t,k′(q⋆) andθ[ext]\m,⋆

t,k′ (q⋆), according to

θ⋆t,k′(q⋆)
.
=

M⋆

∏

µ=1

P
[ext]
CD

(

B⋆
t,k′,µ = b̄

(q⋆)⋆
k′,µ

)

(11)

θ
[ext]\χ,⋆
t,k′ (q⋆)

.
=

M⋆

∏

µ=1
µ6=χ

P
[ext]
CD

(

B⋆
t,k′,µ = b̄

(q⋆)⋆
k′,µ

)

. (12)

Equation (11) has to be evaluated for each distinctq⋆ ∈
{1, . . . , QΨ}. Equation (12) has to be evaluated for each
distinct pair of(q⋆, χ), with χ ∈ {1, . . . ,M⋆}.

Unfortunately, the usage of MDBMs increases the complex-
ity of SDSD. If N⋆

I = ⌈NI/Ψ⌉ = NI/Ψ, a total number
of N⋆

IQ
Ψ(M⋆)2 = NIΨQΨM2 multiplications are required

for computing allθ⋆t,k(q
⋆) and θ

[ext]\χ,⋆
t,k (q⋆) of a frame. The

standard SDSD only requiresNIQM2 multiplications. This
corresponds to an increase of the number of multiplicationsper
frame by a factor ofΨQΨ−1 common to all MDBM decoders.
As the complexity increase grows exponentially withΨ, the
selection of a small dimensionΨ is suggested in order to
keep the receiver moderate in its complexity. Note that the
aforementioned (and the following) complexity considerations
are only an indication of the complexity increase. A real im-
plementation would be performed in the logarithmic domain,
thus requiring additions instead of multiplications for instance.
The re-utilization of intermediate results in, e.g., (11) and (12)
also permits to slightly reduce the number of operations.

In what follows, the different flavors of the MDBM-SDSD
are explained in detail. The corresponding MDBM-SDSD
variables are also annotated by a superscript⋆ for a better
differentiation.

AK1-INTER: In the case of inter-frame correlation, the
different indices within a frame are assumed to be statistically
independent. This allows to write the conditional inter-frame
a priori probabilities of the super indices as

P (I⋆t,k′ = q⋆|I⋆t−1,k′ = q̃⋆) =

Ψ
∏

j=1

P (It,Ψ(k′−1)+j = qj |It−1,Ψ(k′−1)+j = q̃j) (13)

with q⋆ = 1 +
∑Ψ

j=1(qj − 1)QΨ−j and q̃⋆ = 1 +
∑Ψ

j=1(q̃j − 1)QΨ−j . In this case, the SDSD complexity is also
increased. The factorsA⋆

t,k(q
⋆) (intermediate result of the tem-

poral forward recursion) requireQ2Ψ MAC operations while
the computation of the temporal forward recursionα⋆

t,k(q
⋆)

requiresQΨ multiplications per super index. However, the

operations only need to be carried outN⋆
I = NI/Ψ times

per frame. Thus, in the forward recursion, the number of
MAC operations increases by a factor of1

ΨQ2(Ψ−1) while the
number of multiplications increases by a factor of1

ΨQ(Ψ−1).
The number of MAC operations per bit required for computing
the extrinsic information increases fromQ to QΨ.

AK1-INTRA: In contrast to the AK0 and AK1-INTER
cases, the different indices within a frame are not independent
anymore if intra-frame correlation is exploited. In this case,
it is shown in App. B that thea priori probabilities on super
index level can be expressed as

P (I⋆t,k′ = q⋆|I⋆t,k′−1 = q̃⋆) =

P (It,Ψ(k′−1)+1=q1|It,Ψ(k′−2)+Ψ= q̃Ψ)·

×

Ψ
∏

j=2

P (It,Ψ(k′−1)+j=qj |It,Ψ(k′−1)+j−1=qj−1) (14)

with q⋆ = 1 +
∑Ψ

j=1(qj − 1)QΨ−j and q̃⋆ = 1 +
∑Ψ

j=1(q̃j − 1)QΨ−j .
The complexity increase in this case is again comparable

to the AK1-INTER case as the forward recursion is basically
identical and there is an additional backward recursion whose
complexity scales by the same factor as the complexity of the
forward recursion (see AK1-INTER case). For the computa-
tion of extrinsic information,QΨ multiplications (instead of
Q) are necessary in addition to theQΨ MACs.

The implication of the complexity considerations before-
hand is that the computational complexity of MDBM roughly
increases byQΨ−1. For this reason, the dimensionΨ (with
Ψ ≥ 2) should be kept as small as possible. Already with
Ψ = 2, a considerable decrease of the error floor due to
the higherdmin (in the case of a well-chosen redundant bit
mapping) can be observed, as will be shown below by a
simulation example.

Note that although the complexity is increased by MDBMs,
effective methods to reduce the overall SDSD complexity
exist, such as a reduction of the state transitions [45] or an
efficient implementation based on a fast matrix search tech-
nique that allows to implement the algorithm using complexity
of order O(Q) (or O(QΨ) in the case of MDBMs) if the
residual source correlation fulfills certain requirements[46].

B. Simulation Example

The capabilities of MDBMs shall be demonstrated by a
simulation example. The source setup of Section III is used
with Q = 4 level scalar LMQ. The overall coding rate of
the bit mapping shall berBM = 1/2. In the one-dimensional
case, the number of linear block codes with Hamming distance
dmin ≥ 2 is limited due to the small dimension of the generator
matrix (here 2 × 4). For the example, we use either the
repetition code (i.e.,G[BM] = (I2 I2), ∀k ∈ {1, . . . , NI})
or the multiple parity check code (i.e.,G[BM] = (I2 12×2),
∀k ∈ {1, . . . , NI}). The minimum distance of these codes is
dmin = 2. In fact, for the given settings, only systematic linear
codes withdmin = 2 can be found.

In order to increase the possible Hamming distance of the
bit mapping, a multi-dimensional bit mapping withΨ = 2
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Fig. 6. Comparison of different source decoders with and without MDBMs with ρ = 0.9, or δ = 0.9, scalar LMQ,Q = 4, NI = 250, rBM = 1
2

bit
mapping,J = 3, rCC = 1 convolutional code (G[CC](D) = 1/(1 +D +D2 +D3)) or J = 1, rCC = 1 convolutional code (G[CC](D) = 1/(1 +D)),
or rCC = 1 irregular convolutional code according to Tab. II,Ω = 25 iterations, MAP estimation.

TABLE II
OPTIMUM WEIGHTSwOPT FOR THE PROPOSED IRREGULAR CODE WITH

ME = 2 COMPONENT CODES WITHG
[CC]
1 (D) = (1 +D +D2)/(1 +D)

AND G
[CC]
2 (D) = 1/(1 +D) FOR BOTHMDBM-SDSDALGORITHMS

(CORRELATIONρ = 0.9 OR δ = 0.9).

SDSD Algorithm OptimizationEs/N0 w1 w2

AK1-INTER −4.75 dB 0.639 0.361
AK1-INTRA −5.7dB 0.581 0.419

is employed. The utilized generator matrix is the same as
used in Section III, i.e.,G[BM]⋆ = (I4 14×4− I4). Again,
a block consists ofNI = 250 quantizer indices (NI/Ψ = 125
super indices). The utilized convolutional codes are theJ = 3,
rCC = 1 RNSC code withG[CC](D) = 1/(1 + D + D2 +
D3) and additionally in the MDBM case, a low-complexity
rCC = 1 RNSC code withJ = 1 andG[CC](D) = 1/(1+D)
(accumulator). Furthermore, in order to optimize the waterfall
behavior of the MDBM setup, we have utilized the same irreg-
ular inner code as in Sec. III, optimized using the EXIT chart
of the respective MDBM SDSDs. The resulting weighting
factors are summarized in Tab. II.

Simulation results are given in Fig. 6. It can be observed
that the systems employing the one-dimensional bit mapping
suffer from a high error floor, which also depends on the
generator matrix used for the bit mapping. The repetition
coded bit mapping suffers from the highest error floor. This
is mainly due to the fact that the repetition code leads to two
code words with Hamming weight two, while the multiple
parity check code generates a single code word with Hamming
weight two. If the dimension of the bit mapping is increased
to Ψ = 2 and a bit mapping generator matrix withdmin = 4
is employed, the error floor can be considerably reduced.
However, as in Section III, a shift of the waterfall region
towards better channel qualities is observed. This shift can be
compensated by utilizing different channel codes, for instance

the irregular inner code presented in Sec. III. Especially in the
AK1-INTRA case, the MDBM system with the irregular inner
code outperforms all other setups, while in the AK1-INTER
case, a slightly elevated error floor compared to the setup with
MDBMs and theJ = 3 regular inner code, is observed.

In this Section, we have shown that the utilization of multi-
dimensional bit mappings permits to the effectively lower the
error-floor of ISCD, especially if small quantizer code books
are employed. The resulting shift of the waterfall performance
can be efficiently combated by irregular inner codes.

V. CONCLUSIONS

As several known Iterative Source-Channel Decoding
(ISCD) systems showing good waterfall performance have
the drawback of an observable error floor, several alternative
methods for reducing this error floor have been studied in
this paper. It has been demonstrated that the error floor can be
substantially lowered by a proper selection of the bit mapping.
In addition, a carefully designed low-complexity inner irreg-
ular convolutional code can overcome the degraded waterfall
performance of such bit mappings. Due to its simplicity, this
code can also be efficiently employed in the scenarios where
a frame-by-frame adaptation is necessary.

If small quantizer code books are employed, a bit mapping
leading to low error floors is often not available. In this
case, we have proposedMulti-Dimensional Bit Mappings
(MDBMs), grouping several consecutive quantizer indices to
multi-dimensional super indices, thus increasing the search
space for beneficial (in terms of a low error floor) bit map-
pings. The improved error floor performance of ISCD with
MDBMs has been confirmed by simulation examples and it
has been shown that the resulting shift of the waterfall region
can be compensated by the use of an irregular inner code.

In practical applications, usually quantizers with large code
books are utilized besides quantizers with small code books.
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In this case, the application of both presented methods permits
to effectively lower the overall decoding error floor.

APPENDIX A
SOFT DECISION SOURCE DECODING EQUATIONS

For a derivation of the SDSD equations in the probability
domain, we refer to the literate, e.g., [12], [14], [15].

The first steps are common for both SDSD algorithms.
The channel decoder computes extrinsic information for all
M bits of all NI bit patterns. In what follows, this extrinsic
information of theµth bit of thekth parameter in the frame
at time instantt is denoted byP [ext]

CD (bt,k,µ). Note that in
an actual implementation of ISCD,L-values [47] are usually
used instead of probabilities for numerical reasons. The SDSD
equations in the logarithmic domain usingL-values are given,
e.g., in [48].

Under the assumption of a memoryless channel, a set of
reliabilities

θt,k(q)
.
=

M
∏

µ=1

P
[ext]
CD

(

Bt,k,µ = b̄
(q)
k,µ

)

(15)

is determined for each different quantization indexq ∈ I at
each positionk within a frame, resulting in a total number of
NIQ different expressions for each frame at time instantt.
Note that b̄(q)k,µ denotes theµth entry of the bit vector̄b(q)

k ,
i.e., theµth bit of the pattern. We further define the extrinsic
channel-related reliabilities considering all bits of a bit pattern
with the exception of theχth bit

θ
[ext]\χ
t,k (q)

.
=

M
∏

µ=1
µ6=χ

P
[ext]
CD

(

Bt,k,µ = b̄
(q)
k,µ

)

. (16)

Using the expressions in (15) and (16), thea posteriori
probabilities and the extrinsic output of the SDSD can be
computed, depending on the available source statistics.

A. Exploitation of Inter-frame Correlation (AK1-INTER)

If a priori information describing the dependency of quan-
tization indices between consecutive frames is available,the
temporal correlationρ is exploited. In this case, theNI

indices are modeled byNI stationary Markov processesIt,k
of first order, and thea priori knowledge is given by the
probabilitiesP (It,k = it,k|It−1,k = it−1,k).

The a posterioriprobabilities are approximated by [4]

P (It,k = q|zt, zt−1, . . .) = αt,k(q) ∀q ∈ I , (17)

with αt,k(q) being evaluated in the inter-frame forward recur-
sion

αt,k(q) =
1

K1
· θt,k(q) ·

Q
∑

q̃=1

P (It,k=q|It−1,k= q̃) · αt−1,k(q̃)

.
=

1

K1
· θt,k(q) · At,k(q) , (18)

and K1 being a normalization constant ensuring that
∑Q

q=1 αt,k(q) = 1. The valuesα0,k (the transmission is
assumed to start at time instantt = 1) are initialized by

α0,k(q) = P (I1,k = q) ∀q ∈ I . (19)

As the valuesαt,k(q) are reused in the subsequent frame, they
need to be stored, resulting in memory requirements ofNI ·Q
values.

The extrinsic probabilities which are fed back to the channel
decoder for use in the subsequent iteration are given by (for
ℓ ∈ F2) [14]

P
[ext]
SD (bt,k,µ = ℓ) =

1

K2

Q
∑

q=1

b̄
(q)
k,µ

=ℓ

θ
[ext]\µ
t,k (q) · At,k(q) (20)

with At,k(q) =
∑Q

q̃=1 P (It,k=q|It,k−1= q̃)αt,k−1(q̃).
Note that in this work, we do not allow any additional delay

and therefore only consider a single frame during decoding and
no information from future frames is available.

B. Exploitation of Intra-frame Correlation (AK1-INTRA)

If a priori information describing the relation between
quantization indices within one frame are available, the intra-
frame correlationδ is exploited. In that case, theNI indices
in a frame emerge from a stationary Markov process of
first order and thea priori knowledge is modeled by the
probabilitiesP (It,k = it,k|It,k−1 = it,k−1).

Unlike in the AK1-INTER case, the decoding algorithm
can now exploit information from all neighboring positions,
i.e., past and future positionsk − 1 andk + 1, as a complete
frame is processed in one pass of the SDSD. The equations for
determininga posteriori probabilities and extrinsic informa-
tion exploit a forward-backward recursion similar to the BCJR
algorithm [15], [49].

The a posteriori probabilitiesP (It,k = q|zt, zt−1, . . .) =
P (It,k = q|zt) (no inter-frame relations present) amount to

P (It,k = q|zt) =
1

K1
· αt,k(q) · βt,k(q) ∀q ∈ I , (21)

with K1 being a normalization constant ensuring
∑Q

q=1 P (It,k = q|zt) = 1 and αt,k(q) and βt,k(q) being
evaluated in the forward and backward recursions

αt,k(q) =
θt,k(q)

K2

Q
∑

q̃=1

P (It,k=q|It,k−1= q̃)αt,k−1(q̃) (22)

.
=

θt,k(q)

K2
·A′

t,k(q) (23)

βt,k−1(q) =
1

K3

Q
∑

q̃=1

θt,k(q̃)P (It,k= q̃|It,k−1=q)βt,k(q̃) (24)

with the initialization

αt,0(q) = P (It,1 = q) ∀q ∈ I (25)

βt,NI
(q) =

1

Q
∀q ∈ I . (26)

The factorsK2 andK3 in (22) and (24) are used to ensure that
∑Q

q=1 αt,k(q) = 1 and
∑Q

q=1 βt,k(q) = 1, ∀k ∈ {1, . . . , NI}.
The extrinsic information is given by (forℓ ∈ F2)

P
[ext]
SD (bt,k,µ=ℓ) =

1

K4

Q
∑

q=1

b̄
(q)
k,µ

=ℓ

θ
[ext]\µ
t,k (q)βt,k(q)A

′
t,k(q). (27)
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The factorA′
t,k(q) =

∑Q
q̃=1 P (It,k=q|It,k−1= q̃)αt,k−1(q̃) is

required both in (22) and (27) and can therefore be computed
only once and then reused.

APPENDIX B
A PRIORI PROBABILITIES FOR AK1-INTRA

MULTI -DIMENSIONAL SDSD

The probabilityP (I⋆t,k′ = q⋆|I⋆t,k′−1 = q̃⋆) is decomposed
using Bayes’ theorem and by exploiting the first order Markov
property of the single indices, leading to

P (i⋆t,k′ |i⋆t,k′−1) =

P (it,Ψ(k′−1)+1, ..., it,Ψ(k′−1)+Ψ|it,Ψ(k′−2)+1, ..., it,Ψ(k′−2)+Ψ) =

P (it,Ψ(k′−1)+1, ..., it,Ψ(k′−1)+Ψ, it,Ψ(k′−2)+1, ..., it,Ψ(k′−2)+Ψ)

P (it,Ψ(k′−2)+1, ..., it,Ψ(k′−2)+Ψ)

=
P (it,k, ..., it,k−Ψ+1, it,k−Ψ, ..., it,k−2Ψ+1)

P (it,k−Ψ, ..., it,k−2Ψ+1))

with the index substitutionk = Ψ(k′ − 1) + Ψ. By applying
the chain rule of probability and by exploiting the Markov
property of neighboring indices, we get

P (i⋆t,k′ |i⋆t,k′−1) =

P (it,k|it,k−1) · P (it,k−1|it,k−2) · · ·P (it,k−Ψ+1|it,k−Ψ)·

×
P (it,k−Ψ|it,k−Ψ−1) · · ·P (it,k−2Ψ+2|it,k−2Ψ+1) · P (it,k−2Ψ+1)

P (it,k−Ψ|it,k−Ψ−1) · · ·P (it,k−2Ψ+2|it,k−2Ψ+1) · P (it,k−2Ψ+1)

= P (it,k|it,k−1) · P (it,k−1|it,k−2) · · ·P (it,k−Ψ+1|it,k−Ψ)

=P (it,Ψ(k′−1)+Ψ|it,Ψ(k′−1)+Ψ−1)· · ·P (it,Ψ(k′−1)+1|it,Ψ(k′−1))

=P (it,Ψ(k′−1)+Ψ|it,Ψ(k′−1)+Ψ−1)· · ·P (it,Ψ(k′−1)+1|it,Ψ(k′−2)+Ψ).

This means that the product of theΨ−1 crossover probabilities
between each of theΨ indices contained in one super index has
to be multiplied by the crossover probability between the last
index of super indexi⋆t,k′−1 (it,Ψ(k′−2)+Ψ) and the first index
of i⋆t,k′ (it,Ψ(k′−1)+1). Rewriting this fact using the product
notation and by distinguishing two neighboring super indices
directly leads to

P (I⋆t,k′ = q⋆|I⋆t,k′−1 = q̃⋆) =

P (It,Ψ(k′−1)+1=q1|It,Ψ(k′−2)+Ψ= q̃Ψ)·

×

Ψ
∏

j=2

P (It,Ψ(k′−1)+j=qj |It,Ψ(k′−1)+j−1=qj−1)

with

i⋆t,k′ = 1 +

Ψ
∑

j=1

(

it,(k′−1)Ψ+j − 1
)

QΨ−j

and thusq⋆ = 1 +
∑Ψ

j=1(qj − 1)QΨ−j and q̃⋆ = 1 +
∑Ψ

j=1(q̃j − 1)QΨ−j .
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