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Abstract—Audio-visual source encoders for digital mobile
communications extract parameters that — due to delay and
complexity constraints — exhibit some residual redundancyThis
residual redundancy can be exploited by iterative sourceftannel
decoding (ISCD) to improve the robustness against transmsson
noise by performing soft parameter detection as part of the
decoding process. Systems employing ISCD at the receivinga
often exhibit an observable error floor. While this error floor
can be tolerated in some cases, it is often desirable to pecity
reconstruct the source codec parameters. In this paper, wexplain
the reasons for the error floor and propose two solutions for
realizing ISCD systems with optimized error floor performance
while maintaining the desired near-capacity waterfall belavior.
All approaches aim at optimizing the distance properties of
the (redundant) mapping of bit patterns to the source codec
parameters. In some cases, especially if small quantizer de

books are employed, good mappings cannot be found — in this

case, the novel multi-dimensional bit mapping allows to redce
the error floor after decoding.

Index Terms—Iterative Source-Channel Decoding (ISCD), Soft
Decision Source Decoding (SDSD), Fixed-length codes

|. INTRODUCTION

HANNON's source-channel separation theorém [1] stat

systems with good performance. Several techniques fot join
source-channel coding have been introduced. The variety of
these approaches can be divided into mainly two classes.
In the first class, channel properties (like bit error rates)
are utilized throughout the design of robust source engpdin
schemes, e.g., pseudo Gray coding [5], channel optimized
vector quantization[[6], source optimized channel codés [7
or the selection of the optimum rate distribution between
source and channel codingl [8]. In the second class, source
statistics (capturing the natural residual source reducyga
are exploited throughout channel (de)coding. Famous exam-
ples include source controlled channel decoding [9], asd it
application to speech coding [10[, ]11].

Iterative Source-Channel Decodin@SCD) [12]-[15%] can
be considered as an advancement of source controlled chan-
nel decoding[[®], where in each decoding step the source
statistics are iteratively refined in a Turbo-like proceBke
a priori knowledge on the residual redundancy, e.g., non-
uniform probability distribution or auto-correlation, usilized
by a derivative of &oft Decision Source DecodéDSD) [4]

&hich exchanges extrinsic reliabilities with a channelatésr.

hat if the minimum achievable source coding rate dp the literature, ISCD has been applied to systems employ-

a given source is below the channel capacity, the sour
can be reliably transmitted over the channel by performir(ELCS)'
appropriate encoding and decoding operations: thereumceo

fg Variable Length Codeg¢VLCs) andFixed Length Codes
In this paper we put the focus on FLCs, which
are used in wireless systems like GSM, UMTS, and LTE

and channel coding can be separated. The original theor@ffl in recent speech and audio codecs, designed for VolP

from Shannon holds for stationary and ergodic sources aff

grongst others, like G.729.1 and G.718. In fact, FLCs are a

channels and for asymptotically large block lengths. ShannSPecial case of VLCs and all results given in this paper can

already showed the sub-optimality of the separation thmor

for multi-user systems i [2].

directly be generalized to ISCD for VLCs. An introduction

to ISCD techniques for VLCs can be found in[16],[17]. The

But also in more “traditional” cases, the constraints @bplication of ISCD to discrete-valued sources (which daa a

the original separation theoreiml [1] are almost never fatfill

be source codec parameters) is highlighted in [18].

In state-of-the-art audio, image and video coding starsjard The key element of the ISCD approach is to exploit residual

delay and computational complexity restrictions imply tise

redundancy which is contained in the output parameters of

of short block lengths. Some terms of residual redundantyf Source encoder. As mentioned above, this is mostly due
typically remain in the source codec output parameters, (e {f delay and computational complexity constraints. Howeve

scale factors or predictor coefficients) due to these caimssr

a source encoder can also deliberately keep redundancy in

and can be exploited at the receiver of a noisy communicati}f Signal in order to increase the error robustness. If this

system in order to increase the error robustness, glg.Jd3],

redundancy is removed, for example by differential encgdin

For these reasons, the joint study of source and chanH decoder is prone to error propagation.
coding needs to be considered for realizing transmissionEXtrinsic Information Transfe(EXIT) charts [19], [20] are
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a powerful analysis tool for an easy comparison of different
system setups and for assessing the convergence perf@amanc
of ISCD. Many optimizations and performance improvements
of ISCD have been obtained by using EXIT charts, elg), [15],
[21]-[23]. However, ISCD systems optimized using EXIT
charts show in some cases an error floor, which means that a
fraction of the parameters are still reconstructed erraslp
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Fig. 1. Transmitter and receiver (base band model) of arm&sson system utilizing ISCD.

even in good channel conditions. The error floor is mainly quantizer indexi;, denoting the selected entry of the
influenced by the distance properties of the bit mapping guantizer code booK = {o(!), ..., 5?9} c R. In this paper,
the source encoding stage. In several source codecs, the ewa only consider scalar quantization in order to demorestrat
reconstruction of the parameters is indispensable foraguarthe concept, which can easily be extended to incorporate
teeing reconstruction of the source signal. The optimizedif vector quantization. All quantization indices within arfra are
ISCD schemes improving error floor and waterfall by means gfouped to a vectot, = (i, 1,...,%,~,). TO €ach quantizer
EXIT charts and interleaver gain analysis is discussed 4 [2index i, ; selected at time instaritand positionk, a unique
in the context of VLCs with low redundancy. The case dfit patternb, , € B = {b(!),... b(@} C F) of M bits
FLCs is also examined in_[24]. is assigned according to the (possibly redundant) bit nmeppi
The goal of this paper is to reduce the error floor of ISCD ifunction3 (with F; = {0, 1}). The single bits of the bit pattern
the context of FLCs by several means. First, it is shown hadw ;, are denoted by, 1., € Fo, with € {1,..., M} C N;
the selection of the bit mapping influences the error floor. Wienoting theuth entry ofb, ;. The single bits of the possible
further show how the resulting loss in the waterfall regian ¢ bit patternsb(? = ((‘,@7 . 5;5)7 . 755&)) are denoted by
be compensated by the use of a low complexity inner irregulgﬂm_ If M > log,Q, the bit mapping is called redundant,
code. In certain cases, especially if small quantizer ca&® a5 it introduces artificial redundancy: more bits than dbtua
are employed, the use of such an optimized bit mapping dgcessary are spent to represent a quantizer index.
not always possible. In these cases, an elegant transmitter
m_odificgtion can be applied. The resulting innovativielti- The bit mapping can always be considered to be
Elzngrri?;;gl)?lt Mapping$MDBMs) permit to further lower the composite functionB = Bo BN ie., B(i,) =
. 3 NB]\ (- _ B3 (RINBl(; i NB] . MBI
This paper is structured as follows: Sectioh I introduce&BOB_[ ]) (er) = B(B.[ ](Zt"k.)) with .B[ [:\,E';]]I—> I
. . ) enoting the natural binary bit mappindg generates
the considered system model and the notation. It is shownthne natural binary representation of the index of length
Sec [l how the error floor can be considerably reduced by gng; NdQ] accordin [NB] /; 7 LINB]
. ) . - e g toB™l(iy ) = by, =
proper selection of the bit mapping while maintaining a goo NE] INB] . INE] ; ’
waterfall performance. SectidnllV introduces the concept §0t k.15 - - -vbt,k,M[NB]) with b, = | szmer—; | mod 2. The
MDBMs and shows how they permit to lower the error flooexpression[y| denotes the smallest integer greater than or
if small quantizer code books are employed. The equatioegual tox and | x| denotes the largest integer less than or
for SDSD are given in Append[x]A, while AppendiX B showsqual toy. Natural binary (NB) simply signifies that the binary
how to computea priori probabilities in the case of MDBMs. representation of the natural number describing the quemti
index is used. In what follows, the superscrifi®!” always

Il. SYSTEM MODEL refers to the natural binary component of the bit mapping.

Figure[1 depicts the base band system model considered

throughout this paper. At time instamt a source encoder The second constituent position-dependent function of the
extracts a frame ofN; source codec parametens, = mapping,B; : F"™ — By can be regarded as being a (po-
(ue,. .., usn,) out of the audio-visual source signa}. tentially non-linear) block code of rategy = MMNE!/AL.
The source codec parameters can for example be gain f&¢0 prominent examples of non-redundant mapping functions
tors, filter coefficients, pitch values, the residual sigral B are the Gray mapping and the pseudo-Gray mapping [5].
transform coefficients of speech and audio codecs. Thdkdhe bit mapping is generated using a linear block code,
parameters are assumed to be either inter-frame correldieel function 5, can be described as a multiplication with

with correlation coefficientp = E{U;U;—14}/E{U?,} @ generator matrbdGEM ie., b,y = bg’j‘,fl . GIBM] with
or intra-frame correlated with correlation coefficiefit = dim GBM = MINBl x Ar. After the bit mapping, theN;
E{Ut kU r—1}/ E{U?,}. Note that the upper-case lett€}, individual bit patternsb; ; are grouped to a bit vector, =
denotes the random variable describing the source codeg1,....byn,) = (ze1,...,Tee, ..., TNy ). The size of

parameteru, .. The frameu, is quantized using &)-level the bit vector isNx = N;M. The single bitsy, ¢ of x; are
scalar quantizel® which maps the input parameteg ;, to indexed byé. As the bit mapping is considered to be a code,
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the rate of the bit mapping is defined by coefficientp = 0.9) or intra-frame correlated parameters (cor-
Ny 1d 1d o e )INBI relation coefficient = 0.9). Such high correlation coefficients
rBM = Nr-1dQ = M@ i Q=M (1) frequently occur in speech and audio codéds [4]] [26]. The

_ N’f .M _ _ M source emitsN; = 250 parameters per frame which are
Following the bit mapping, the bit vecter; is permuted by quantized by aQ = 16 level scalarLloyd-Max Quantizer
a bijective interleaver functiom which maps the bit vector (LMQ). Bit patterns of M = 8bits, Vk € {1,..., Nt} are
x; of length Nx to an (interleaved) bit vectar, of the same assigned to the quantizer indices according to a repetition
length. In this paper, we limit the interleaving to the présecoded bit mapping. The generator matx®M! generates
frame x; in order not to violate a possible delay constrairg repetition code, i.e.GBV = (I, 1;) with I, denoting
required in audio or video communication. the 4 x 4 identity matrix. This repetition coded bit mapping
After interleaving, a convolutional channel encoder okrathas been found to result in a very good performance for
roc = Nx /Ng encodesc; t0y; = (Y11, Y- -»YtNe)  p = 0.9 and AKL-INTER source decoding [27] and is in
consisting of Nz bipolar bitsy;, € {+1}. In Turbo-like fact the optimal redundant bit mapping (in terms of decoding
systems designed for iterative decoding, the rate of the (igonvergence) that is obtained by a systematic generatoixmat
ner) channel code can bec = 1 [20]. We restrict our GIBM for the given setup (i.e., source properties, quantizer,
considerations to convolutional codes, as, accordind @, [2and utilized channel code). Afté&-random interleaving with
[25], the inner component of a capacity-achieving serially — 15 [28], a ratercc = 1 recursive convolutional code with
concatenated system should beeaursiveconvolutional code memory.J = 3 (J denotes the number of memory elements
of ratercc = 1. of the shift register) and generator polynom@i“!(D) =
On the channel, the bipolar symbols gf (with symbol 1/(1 4 D + D? 4 D3) is applied.
energy E; = 1) are subject to additive white Gaussian noise |n the first publications on ISCD, usually non-redundant bit
(AWGN) with known variancer?, = Ny /2. After transmitting  mappings were used together with rate; < 1 convolutional
the bipolar values over the channel, a vector of noisy valugsdes. However, it has been found in[21].1[29].1[30] that a
Zy = (Zt,y c s 2t,Np) =Yyet 1y is receiyed. redundant bit mapping can lead to significant improvements.
The aim of ISCI_D_ is to jointly expl_0|t the channel-rel_ate(Utuizing redundant bit mappings together withbe = 1
knowledge, the artificial channel coding redundancy, the arcodes complies with the design rules for serially concdesha
ficial redundancy possibly introduced by a redundant bit-magodes given in[[20],[[31]: The inner code shall be a recursive
ping as well as the natural residual source redundancy for @nvolutional code (see alsb |25]) of ratec = 1 and the
proximating thea posterioriprobabilitiesP (i x|z, z:—1,...) outer code shall have a minimum Hamming distanee2.
that are used to estimate the source codec parameters.e~ore repetition coded bit mapping realizes this constramt o
attainment of this aim, a channel decoder arfsiodt Decision the Hamming distance [27]. To the best of our knowledge,
Source Decode(SDSD) iteratively exchange extrinsic infor-many publications focusing on the design of (redundant) bit
mation in a Turbo-like process [12]. [14]. The SDSD equatiormappings for ISCD aim at a good convergence behavior
taking into account either inter-frame (AK1-INTER) or iatr and often neglect the error floor performance. An error floor
frame correlation (AK1-INTRA) are summarized in Agpl A. analysis in the VLC case (and also applied to FLCs) is given
After a fixed numberQ2 of receiver iterations, the esti-for example in [24].
mateda posteriori probabilities are used to reconstruct the The dashed lines in the simulation results shown in[Big. 2-a)
quantizer reproduction values ;. using MAP estimation by show that this system setup leads to a relatively high error

B = Q (i) = 9004, with [4] floor in terms of SER, although having a very good waterfall
o = arg max P(Ix = qlz1, 7 ) @) behavior. Note that the residual source correlation can be
S bk = dlE g1, - ) interpreted as an additional code of rafd™**, such that the

theoretical performance limit is shifted towards lowemed of
Es/Ny (or Ey, /Ny respectively)[3R]. The error floor is due to
the properties of the (serially concatenated) ISCD tratiemi
It is mainly characterized by the interleaver siXg; and the
fHﬁut Output Weight Enumerating FunctigtfOWEF) of the
component codes [31] and thus also closely related to the
flinimum Hamming distancé,,;,, of the codes.

One approach to lower the error floor is to utilize a different
outer code with better distance properties (as the repetiti
code only exhibitsl,,;, = 2). For the given setup/NBl = 4,

Finally, the estimated source parameter vedigris ob-
tained by concatenating all the estimated valigs, i.e.,
ﬁt — (’LA)t_rl e 1A)t7NI) — (ﬂt_l e ’let_’K e ﬂt,NI)- USing ﬁt, the
signal synthesis stage of the source decoder can reconst
the audio-visual source sign&l. As we assume that the goal
of the ISCD stage is to perfectly reconstruct the quantiz
code book indiceé‘t,k, we mostly utilize thesymbol error
rate (SER)P(f = I) as performance assessment measure.

I1l. ERRORFLOOR REDUCTION BY DISTANCE OPTIMIZED ram = % i.e., M = 8, there exists only a single linear block
BIT MAPPINGS ANDIRREGULAR CHANNEL CODES code of maximum Hamming distandg,;, = 4 with generator

The performance of the ISCD system with different sofnatrix GIBM! = (I 14x4—14) with 1454 denoting thet x 4
decision source decoders shall be compared in simulation ed-1 matrix [33]. A similar matrix (with several systematic
amples. In order to show reproducible results, the sourdeco repetitions) has also been used|[inl[34].
parameters are modeled by a Gauss-Markov source generatirfgigure[2 shows the comparison between both mappings. By
either inter-frame correlated sets of parameters (cdioela increasing the distance by a factorZfthe error floor can be
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Fig. 3. Base band model for the transmitter with an irregatzannel code.
107}
-6 |
10 —<— AKI-INTER . . .
& AKI-INTRA depicted in Fig[R-b) (for the AK1-INTER and AK1-INTRA
107 : : ; ; cases). While the characteristic of the repetition cQdg rep

-6 -5 —4 -3 -2 -1 and the channel decoder characteri€tig have well matching

a) E,/Ny [dB] shapes, the Hamming distance optimized code exhibits a
. | characteristicCsp qamm With a distinct curvature.

AKL-INTER AKI-INTRA One way to overcome this problem is to search for a
= Csp Hamm_ /) E CSDA,Hamm / different ratercc = 1 inner recursive convolutional code.
— Cop—t", En Cen /) The concept ofirregular bit mappings introduced in [[22],
2805 0 ' [35], is not applied as its usage would imply a low&f;,. In
Ta 7 ‘/ ia /‘/ the irregular bit mapping case, high rate mappings have to be
<0 A2 Corer = < Csp used together with low rate mappings. The high rate mappings

B — re] .
oO " " o0 » ° | naturally have a lowetl,,;,, and therefore lower the effective
b) 2] 115 i) llepr] (] i) distance. If a bit mapping with,,;, = 4 should be retained, a

different inner code has to be used. An elegant way to design

Fig. 2. Comparison of the effect of different block code lmheedundant bit & very well matching inner code is to apply the concept of

mappings with different source decoders in ISCD with= 0.9 or § = 0.9, irregular codes[36] to the inner code [23], [37].
LMQ scalar quantizationN; = 250, rgy = % bit mapping, 8-state conv.

code GIC(D) = 1/(1 + D + D2 + D3)), Q = 25. The irregular inner codes presented [n1[23] are based
a) Symbol error rate. on Randomly Punctured Recursive Systematic Convolutional
b) EXIT charts atFs/No = —4dB. (RPRSC) codes. In this example, we show how to use simple

non-punctured codes of rate.c = 1. The codes shall be
selected such that the overall decoding complexity of the

significantly lowered. In fact, a union bound analysis adggg channel decoder is reduced. Maunéeal. also employ non-

to [31] confirms that the error floor could be decreased by mdpgnctured ratecc = 1 codes in[[37]. Due to the curved shape

than two decades (the SER is decreased by a factor lar§bthe SDSD EXIT characteristic, it can be challenging to find

than 220) and that the error floor in the case of the optimiz¥¢ll matching rate-1 recursive convolutional codes.

bit mapping has a steeper slope. This analysis has beem order to demonstrate that a system with irregular codes

conducted by comparing the error rate union bounds of thees not need to be complex, we show a very simple system

corresponding serially concatenated channel codes timgsisemploying an inner irregular code consisting bfs = 2

of a block code as outer code and the convolutional codenvolutional codes. This encoder is depicted in the bard ba

as inner code, assuming a uniform interleaverl [31]. Detaitsodel of Fig.[B. The interleaved bit vectaf is partitioned

on the error floor and an asymptotic interleaver gain anglysito x,(*) and x},(?) according tox} = (x,(,x,®). The

in the context of ISCD with VLCs and FLCs can be foundiregular inner encoder then encodes the sub-vestét)

in [24]. The simulation results depicted in FIg. 2 confirm theonsisting of N\’ = w, Nx bits with the first code and the

expected results: The error floor is considerably decreasdd sub-vectorx,® consisting ofN)(f) ~ wyNx bits with the

the slope of the floor is higher, leading to considerable 9jaigecond code. The goal of the inner code optimization is to

if low SERs are targeted. Astonishingly, we have not founghq a weight vectorw = (w1, w2)T. In this example, the

an error floor in the AK1-INTRA case for SERs 10™7 in first convolutional code is a ratecc = 1 Recursive Non-

our simulations. Although a floor seems to manifest itself &y stematic ConvolutiondRNSC) code with memory = 2

Es/No ~ —2dB, the SER curve quickly drops afterwardsgng octal generato&[CC! (D) = (1 + D + D?)/(1 + D),

The simulation has been carried out using a total number Qhjje the second RNSC code of ratec = 1 hasJ = 1

2 - 10® frames consisting ofV; = 250 indices perEs/No and GICC] (D) = 1/(1 + D) (accumulator). Both codes

value. can be represented by a trellis diagram with eitheor 2
The drawback of this distance-optimized bit mapping is thatates, respectively. This means that the (channel degpdin

the waterfall has been shifted liy7 - 1dB towards higher complexity is more than halved compared to the- 3 code

values of E5/Ny. This can be explained by the EXIT chartpreviously used. In the case of two component codes, the
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TABLE | 10 oo
OPTIMUM WEIGHTS Wopt FOR THE PROPOSED IRREGULAR CODE WITH
Mg = 2 COMPONENT CODES W|T|-G[1CC} (D)= (1+ D+ D%)/(1+ D) o
AND G[QCC}(D) =1/(1+ D) FORBOTHSDSDALGORITHMS 10 ¢
(CORRELATIONp = 0.9 OR6 = 0.9).
10_2 ..........
SDSD Algorithm  OptimizationEs /Ng w1 w2 DRI
AK1-INTER —4.2dB 0.574  0.426 1()_3 3
AK1-INTRA —4.9dB 0.489 0.511 %
2 107}
optimization problem can be formulated as|[23],1[36] 107},
Wopt = argmin [|Ccp - W — Cgpj 3 ~ : ‘ :
opt = ATE 1T I i ® 10°t| —o— AKI-INTER |
subject to ——&— AKI-INTRA |
-7
10 : : : :
Ccp - W > csp,inv + 0, (4) 6 =5 —4 -3 -2 -1
w1 + we =1, (5) ES/NO [dB]
0<w; <1, viedl,..., Mg =2}. (6) Fig. 4. Comparison of a regular channel code= 3 and G[CCl(D) =

. N . 1/(14+D+D?+D?3)) and an irregular code built from/g = 2 convolutional
The matrix Ccp contains= sample points of both channelcodes, 0 = 25, MAP estimation, other simulation settings as in . 2.

decoder characteristics ardp jn contains= sample points Dashed black (- — -): repetition code and regular channet cod

of the inverse SDSD characterism"gl The offset vectono Solid blue (—): Hamming distance optimized, regular convolutional code
irol th it of the d d_D. . e traliit (As\olid red (—): Hamming distance optimized, irregular convolutionatieo

can contro e wi (0} € decoding tunnel. Constr

ensures an open decoding tunnel while constraldts (5) ¢ ’s : , , .

@) guarantee the validity of the weights = (w; w)”. [ —e— Ak1aNTER | 0 ]
As all component codes are of identical ratec = 1, no ——s8— AKI-INTRA ‘ ‘
additional rate constraint needs to be considered. Foradl@it v 20F [ P 950950
description of irregular inner codes, the reader is reterr = )
to [23] . optim. BM

: 15 & irreg. CC A

The optimization yields optimum weight® o, which are %
summarized in Tablg | for the four distinct SDSD algorithng
Note that the optimization is performed at different channg
qualities, depending on the algorithm used. Fiddre 4 depi 5
the simulation results. Significant gains are observed eoath 5 :
to the system employing the Hamming distance optimiz optim. BM &
bit mapping and the regulai = 3 code. The very good 0 _o— & reg. CC
waterfall performance of the reference system with rejpetit -6 -5 —4 -3 -2 -1
code according td [27] is almost obtained, however, therer Es/Ny [dB]
floor is significantly reduced. Furthermore, the algoritomi
complexity of the channel decoder is also reduced, due to I‘;i% 5. Reconstruction SNR performance for the setup etliin Fig.[3

. ashed black (- — —): repetition code and regular channet cod
smaller number of trellis states. Note that although thererrsig piye (—y: Hamming distance optimized, regular convolutional code
floor is reduced compared to the first system employing tiselid red ¢(—): Hamming distance optimized, irregular convolutionatieo
bit mapping with the repetition code, the error floor regiofstate conv. coded(®“I(D) = 1/(1 + D + D* + D)), © = 25.
starts at higher SER values compared to the system with
optimized bit mapping and the reguldr = 3 convolutional
code (SER ofx~ 10~* compared to~ 10~° for the AK1- to get more insights. Such an analysis is however not within
INTER case). However, due to the earlier convergence, ttili@e scope of this paper.
defect is compensated for, such that in the AK1-INTER case,Figure[% additionally shows the reconstruction parameter
a better SER performance is obtained in all observed chanB&R E{U2}/ E{(U — U)?}, i.e., the SNR between original
conditions with the system employing the irregular innesleeo and reconstructed source codec parameters, for all thigesse
In the AK1-INTRA case, an error floor can now be observedgpicted in Figl 4. The same behavior as in Elg. 4 is observed.
contrary to the case with the optimized bit mapping and théhe maximum attainable SNR is given by the quantizer and
regular convolutional code. However, the performanceils stamounts t620.22 dB for the given settings. Note that there is
better in this case for an SER 2 - 10~7. The slightly no straightforward relation between SER and reconstractio
different error floor behavior may be due to the worse distanE&NR, if MAP estimation according td](2) is performed. A
properties of the irregular convolutional code compareth& single symbol error can either have no influence at all on
regular/ = 3 code. A detailed analysis based on the concefite parameter SNR (if the original parameter had a value
of uniform interleaving, taking into account the IOWEF oftorresponding to the quantizer decision boundary and the
outer and inner code, could be performed| [24].| [31] in ordeymbol error leads to the quantizer reproduction level with

10t

P
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6 ITERATIVE SOURCE-CHANNEL DECODING WITH REDUCED ERROR FLORS

the same distortion) or a very high influence (if the distorti a fixed number of iterations or if the frame-to-frame vadati
between original and erroneously reconstructed paranieteof |Ccpw — cspinvl|2 is sufficiently small.

maximized). If the symbol error rate is small enough, the re-

construction SNR difference is however almost not notieeab |/ Error FLOOR REDUCTION BY MULTI-DIMENSIONAL

Our presented approach with bit mappings based on linear BIT MAPPINGS

block codes does not aim at maximizing the reconstruction . _ ) .
SNR in the error floor. Such an optimization should map Incr_eas_lng the Hammmg_dlstance (_)f th_e redundant bit
adjacent quantizer code book entries to code words with IGUAPPING 1S not aIways possible, espemqlly |f-the number of
Hamming distance, as these are more likely in error, taki@ntization levels) is small. The Hamming distance of the
also into account the (possibly unequal) parameter digth  °It Mapping is upper bounded by the Singleton bOL['ﬁB? with
and the parameter correlation. Such an optimization is ot < M —1dQ +1 (see, e.g,[[41]). fldQ = MTH,
within the scope of this paper, where we aim at minimizing}en thiBSmgleton bouﬂg can also be expressednﬁs <

the symbol error rate, which is necessary if, for instancg, = M 41 =1+ ML _1_)' For example, if = 4
source codecs are employed that require a certain resiéiRal MBI = 2) andrgy = 1/2, dmin is bounded by, < 3.

or even the error-free reconstruction of certain pararseteflOWever, linear block codes ovey, of size2x 4 only achieve
Furthermore, the utilized concept based on block coded Hipin < 2. _ ) ) _ o
mappings permits one to implement an easy stopping crite-'n Order to achieve higher distancgs;, without modifying
rion [22]. Approaches optimizing the bit mapping with respe the rat_efrBM andQ, a different app_roach has to b_e consn_jered.
to the reconstruction SNR are presented, e.g.[in [38],.[3 ollowing the. Singleton bound with constaiiy, increasing
Further note that if a maximization of the reconstructiorRSN@min results in larger codes. Unfortunately, the size of the
is targeted, the MAP estimation of the parameters accorgingc0de is limited by@. In order to be able to utilize larger
@) should be replaced by an MMSE estimation, maximizingPdes, Multi-Dimensional Bit Mappings(MDBMs), which

the reconstruction SNR. The MMSE estimation rule is give@OUp several quantizer indices to oswper indesand utilize
by [4] a larger code as redundant bit mapping, can be used. This

larger code allows a larger Hamming distantg, and thus

1
TBM

. < —(q) results in a lower error floor.
Vek = Zv Pk =qlan 2, ). () The MDBM approach is similar to the concept of
= multi-dimensional mapping®riginally considered for trellis-

In some applications, the SDSD EXIT characteristics m&@ded modulation[[42] and later applied among others to
vary from frame to frame due to the instationarity of th8it-Interleaved Coded Modulation with Iterative Decoding
source, such that a re-optimization of the channel code (BICM-ID) [43], [44]. The application of MDBMs is straight-
required on a frame-by-frame basis. In_[36], an efficiederward at the transmitter sidel consecutive quantizer in-
realization of the optimization has been presented. Howev@iCeSir, ..., it ryw-1 are grouped to a super index,,,
even the simple basic approach[of|[36] is sufficient, if omgt & = [k/¥] with
codes are used. The optimum vectef fulfilling constraint o

@) is found by [36] it =1+ (i 1w —1) QY (10)

—1
— C&Cep) 1241 (8)
11x2 (CZrCep) "oy ( ) ) andif,, € I* = {1,...,Q"}. A frame then contains a total

number of Nf = [N;/¥] super indices. To the super index
- ; : 1. INB] % ot

e -1 iy, the natural binary representatld){,k, consisting of
wo = (CcoCep)  Cepespiinv () el - . A8l pits is assigned, followed by the (possibly)
denoting the optimum solution of the unconstrained profgdundant part of the bit mapping. After bit mappinyy
lem (@). 11> denotes the two-dimensional row vector corSUPer bit patterndy ., k" € {1,..., N7} of M bits result
taining all ones. Note that only matrices of maximum sizAS in the one-dimensional cask;,, € B* C Fy'", with
2 x 2 need to be inverted ifk8) andl (9) thus leading to a vel* = {b(M)*,... b@")*}. Because the rategy of the
low computational complexity of the optimization. bit mapping is constrained to a fixed value, the condition

Usingw’, which only fulfills the constrainf(5), the optimumN;M = N7 M* has to hold.

solution can be found by a steepest descent approach [40Thus, choosing MDBMs with dimensiong > 1 permits
by exploiting the fact that %HCCDW —cspinl[2 = the use of a longer code, and thus to (theoretically) inereas
2(Ccpw — cspinv) [36]. The steepest descent approach ihe Hamming distance of the outer component code in the
an iterative algorithm, where in each iteration the gratliemerially concatenated system [41].
(multiplied with a small enough step size) is subtracteanfro Finally note that using MDBMs together with scalar quan-
w’. In the present case, the gradieé%HCCDw —csp,invl]2  tizers (I = 1) can also be interpreted as usifig= ¥ dimen-
as well as the gradients corresponding to the (convex) caienal vector quantization together with (one-dimensipbhia
straint [6) need to be considered. The resulting weights anappings. The (separable) code book of this resulting vecto
subsequently used ag, in (8) to compute a new’ for the quantizer is composed of the original scalar code book ih eac
next iteration. The optimum vectev, is either obtained after dimension. However, as it is often not possible to change the

Lixowg — 1 j=1

w = wy—

with
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ITERATIVE SOURCE-CHANNEL DECODING WITH REDUCED ERROR FLCRS 7

quantizer (as the source codec is given and fixed), MDBMperations only need to be carried ot = N;/T times
have to be used for achieving higher distandgs, of the per frame. Thus, in the forward recursion, the number of

outer code. MAC operations increases by a factor-gQQ(‘I’*” while the
number of multiplications increases by a factor;}pQ(‘I’*”.
A. Receiver Modifications The number of MAC operations per bit required for computing

tge extrinsic information increases frofto Q.

In order to be able to decode MDBMs, the SDSD ha
- . . ! . AK1-INTRA: In contrast to the AKO and AK1-INTER
to be modified accordingly. The different kinds of decodin . . o :
. : ases, the different indices within a frame are not indepetd
algorithms have to be considered separately, however,rgte fi

steps are common to all four algorithms. The factrs(q) anymore if intra-frame correlation is exploited. In thissea
' ’ it is shown in A that thea priori probabilities on super
andefﬁ\m(q) given by [I%) and[{(16) have to be replaced by, wn in App[B prior b " Hp

i ¥hdex level can be expressed as
07, (¢*) and6%\"™* (¢*), according to

PI*/:*I*/ :~*:
M (t,k q|t,k71 q)

b(a) = [T P (Biw, = b)) (1) P(Ig‘l’“@’—lm:CI1|ft,w<k’—2>+w:®>'
p=1
M < [T Pwiw—y+i =@ Tww—1)4j—1=0-1)  (14)
1\ x,x . ext 7(q")* -_
bl () = T Pl ( =0 ) . Q2 j=2
. , N o i -
Z#)lc with ¢* = 1 + ijl(qj - DY and ¢* = 1 +

v ~ U—j
Equation [[TI1) has to be evaluated for each distigict € 25=1(G5 1)Q. ' N . .
1 Q"}. Equation [IP) has to be evaluated for eac The complexity increase in this case is again comparable
distinct pair'of(q* ), with y € {1 M) ) the AKL-INTER case as the forward recursion is basically

Unfortunately, the usage of MDBMs increases the Compleggentical and there is an additional backward recursionsgho
ity of SDSD If,N* — [N;/¥] = N/, a total number complexity scales by the same factor as the complexity of the
. I - - 1

o N 1 N teton e e e Teurion o AKTINTER cao. or o compt
for computing allé; , (¢*) and GE?,:Q\X’*(q*) of a frame. The ’ P

; e . are necessary in addition to tig¥ MACs.
standard SDSD only require¥;QM? multiplications. This @ yi it l6g

q . fh ber of multiplicati The implication of the complexity considerations before-
corresponds to an mcrgzisle ofthe number of multiplicap@ns 4 s that the computational complexity of MDBM roughly
frame by a factor oft Q common to all MDBM decoders.

As th lexity i allv wikh th increases byQ¥~1. For this reason, the dimensioh (with
S the complexity increase grows exponentially with the g, > 2) should be kept as small as possible. Already with
selection of a small dimensiol is suggested in order to

U = 2, a considerable decrease of the error floor due to

keep the Tece“’er moderate in_ its complex_ity. Not_e _that ﬂfﬁe higherd,,;, (in the case of a well-chosen redundant bit
aforementioned (and the following) complexity considienas mapping) can be observed, as will be shown below by a

are only an indication of the complexity increase. A real i”EimuIation example

pt:ementaFipn ngl_d, be perforrge(f:i in ;[helllog_arith;nic. domain, Note that although the complexity is increased by MDBMs,
E”:JS requ_llr_lng_a Tpns '”Stg?‘ 0 multlp_|cat|ons ﬁ"mce' effective methods to reduce the overall SDSD complexity
e re-utilization of intermediate results in, e.g..](18)1412) exist, such as a reduction of the state transitibn$ [45] or an

alslo pehrmilfs”to S"gEtly dr?fduce the numaeLOf'aBeBr,aﬂggss'Defficient implementation based on a fast matrix search tech-
nw at. oflows, the ! erent flavors o t.e ) nique that allows to implement the algorithm using compiexi
are explained in detail. The correspondmg MDBM—SDS[Bf order O(Q) (or O(QY) in the case of MDBMs) if the
V‘?‘“ab'e? are also annotated by a superscrifior a better residual source correlation fulfills certain requiremed®j.
differentiation.

AK1-INTER: In the case of inter-frame correlation, th : .
different indices within a frame are assumed to be stadiltyic B S|mulat|on. _E.xample
independent. This allows to write the conditional intearrfre ~ 1he capabilities of MDBMs shall be demonstrated by a

a priori probabilities of the super indices as simulation example. The source setup of Secfioh Il is used
with @ = 4 level scalar LMQ. The overall coding rate of
P = q" [ {_y =) = the bit mapping shall begy = 1/2. In the one-dimensional
o case, the number of linear block codes with Hamming distance
H Pl o —1)4j = Glli—rwmw -1+ = q)  (13) dmin > 2 is limited due to the small dimension of the generator
=1 matrix (here2 x 4). F[é)'&] the example, we use either the
. , repetition code (i.e.G = (I L), Yk € {1,...,N;})
with ¢* = 1 + Z;p:l(qj - DRY and ¢ = 1+ o the multiple parity check c(ode (i).eG[BM] :{ (I 12X2}),

Zle(% —1)Q¥~. Inthis case, the SDSD complexity is alsoyk € {1,..., N;}). The minimum distance of these codes is
increased. The faCtOI?éS:_’k(q*) (intermediate result of the tem- dmin = 2. In fact, for the given settings, only systematic linear
poral forward recursion) requir@?¥ MAC operations while codes withd,,;, = 2 can be found.

the computation of the temporal forward recursiof, (¢*) In order to increase the possible Hamming distance of the
requires@QY multiplications per super index. However, thebit mapping, a multi-dimensional bit mapping with = 2
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1o A'Kl —INTER 1o A'Kl —INTR'A
10" 3
107
107}
B0} &
207 z
10°°
107
107" : : : : : : : :
-5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
Es/Ny [dB] Es/Ny [dB]
— > — Bit mapping based on repetition code (¥ = 1) —#*— MDBM, J = 3 convolutional code
— © — Bit mapping based on multiple parity check (¥ = 1) —+— MDBM, accumulator

——%— MDBM, irregular inner code

Fig. 6. Comparison of different source decoders with andauit MDBMs with p = 0.9, or 6 = 0.9, scalar LMQ,Q = 4, N; = 250, rgm = % bit
mapping,J = 3, rcc = 1 convolutional code@(C1(D) = 1/(1 + D + D? + D3)) or J = 1, rcc = 1 convolutional code@!©Cl(D) = 1/(1 + D)),
or rcc = 1 irregular convolutional code according to ThB. {I,= 25 iterations, MAP estimation.

TABLE Il . . . . .
OPTIMUM WEIGHTS wopr FOR THE PROPOSED IRREGULAR copE with 1€ iregular inner code presented in Seg. l1l. Especialfhe

Mg =2 coMPoNENT copes wiTHGI®Y/(D) = (1 + D + D2)/(1 + D)  AK1-INTRA case, the MDBM system with the irregular inner
AND GE°“Y(D) = 1/(1 + D) For BOTHMDBM-SDSDALGORITHMS  code outperforms all other setups, while in the AK1-INTER
(CORRELATIONp = 0.9 OR§ = 0.9). case, a slightly elevated error floor compared to the settip wi

MDBMs and theJ = 3 regular inner code, is observed.

SDSD Algorithm  OptimizationEs /Ng w1 wo . . e .
In this Section, we have shown that the utilization of multi-
AK1-INTER —4.75dB 0.639  0.361 ; ; ; : ; ;
Promiritegy i dB 0581  0.419 dimensional bit mappings permits to the effectively lowss t

error-floor of ISCD, especially if small quantizer code bsok
are employed. The resulting shift of the waterfall perfonca

. o . can be efficiently combated by irregular inner codes.
is employed. The utilized generator matrix is the same as

used in Sectiof 1l, i.e.GBM* = (I, 14,.4—1,). Again,
a block consists ofV; = 250 quantizer indices; /¥ = 125
super indices). The utilized convolutional codes are.the 3, As several knownlterative Source-Channel Decoding
rcc = 1 RNSC code withGI°“I(D) = 1/(1 + D + D?> + (ISCD) systems showing good waterfall performance have
D?) and additionally in the MDBM case, a low-complexitythe drawback of an observable error floor, several alteraati
rcc = 1 RNSC code with/ = 1 andGI°“l(D) = 1/(1+ D) methods for reducing this error floor have been studied in
(accumulator). Furthermore, in order to optimize the water this paper. It has been demonstrated that the error floor ean b
behavior of the MDBM setup, we have utilized the same irregubstantially lowered by a proper selection of the bit magpi
ular inner code as in Selc ]I, optimized using the EXIT chath addition, a carefully designed low-complexity innereige
of the respective MDBM SDSDs. The resulting weightingilar convolutional code can overcome the degraded walterfal
factors are summarized in Tdbl II. performance of such bit mappings. Due to its simplicitysthi
Simulation results are given in Fifl 6. It can be observembde can also be efficiently employed in the scenarios where
that the systems employing the one-dimensional bit mappiagrame-by-frame adaptation is necessary.
suffer from a high error floor, which also depends on the If small quantizer code books are employed, a bit mapping
generator matrix used for the bit mapping. The repetitideading to low error floors is often not available. In this
coded bit mapping suffers from the highest error floor. Thizase, we have proposellulti-Dimensional Bit Mappings
is mainly due to the fact that the repetition code leads to tWIDBMs), grouping several consecutive quantizer indiaes t
code words with Hamming weight two, while the multiplemulti-dimensional super indices, thus increasing the cdear
parity check code generates a single code word with Hammisigace for beneficial (in terms of a low error floor) bit map-
weight two. If the dimension of the bit mapping is increasepings. The improved error floor performance of ISCD with
to ¥ = 2 and a bit mapping generator matrix with,;, = 4 MDBMs has been confirmed by simulation examples and it
is employed, the error floor can be considerably reducdtas been shown that the resulting shift of the waterfallaegi
However, as in Sectiof ]I, a shift of the waterfall regiorcan be compensated by the use of an irregular inner code.
towards better channel qualities is observed. This shifttm®  In practical applications, usually quantizers with largele
compensated by utilizing different channel codes, foranseé books are utilized besides quantizers with small code hooks

V. CONCLUSIONS
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ITERATIVE SOURCE-CHANNEL DECODING WITH REDUCED ERROR FLCRS 9

In this case, the application of both presented methodsifgerni\s the valuesy, 1 (¢) are reused in the subsequent frame, they

to effectively lower the overall decoding error floor. need to be stored, resulting in memory requirement¥y of()
values.
APPENDIXA The extrinsic probabilities which are fed back to the channe
SOFT DECISION SOURCE DECODING EQUATIONS decoder for use in the subsequent iteration are given by (for

For a derivation of the SDSD equations in the probability € ) [14]
domain, we refer to the literate, e.d., [12], [14], [15]. | @
The first steps are common for both SDSD algorithms. Ps[c[;(t](bt,k,u =) =— Z QEeL(Q\#(Q)'At,k(Q) (20)
The channel decoder computes extrinsic information for all Ko —
M bits of all Ny bit patterns. In what follows, this extrinsic 5D —p
information of theuth bit of the kth parameter in the frame 0 ~ ~
at time instantt is denoted byP'3" (b, ). Note that in with Ay x(q) = 22521 Pk =alli k-1 =@t k-1(q)-
an actual implementation of ISCD;values [47] are usually Note that in this work: we do_not allow any a_lddltlonal _delay
used instead of probabilities for numerical reasons. ThersD and therefore only consider a single frame during decodnog a

equations in the logarithmic domain usihgvalues are given, no information from future frames is available.

e.g., in .
?JndeEI?h]e assumption of a memoryless channel, a set Bf Exploitation of Intra-frame Correlation (AK1-INTRA)
reliabilities If a priori information describing the relation between
M guantization indices within one frame are available, theain
Ori(a) =[] Py (Bt,;w = B,(f’zt) (15) frame correlationy is exploited. In that case, th¥; indices
pu=1 in a frame emerge from a stationary Markov process of

is determined for each different quantization indgex I at first order and thea priori knowledge is modeled by the
each positionk within a frame, resulting in a total number ofProbabilities P(7; . = ir k|l k-1 = itk—1)- _ _

N;Q different expressions for each frame at time instant ~Unlike in the AK1-INTER case, the decoding algorithm
Note thatl;Ef) denotes theuth entry of the bit vectorBEf), can now exploit information from all neighboring positions

i.e., thepth bit of the pattern. We further define the extrinsi¢:€-» Past and future positioris—1 and + 1, as a complete
channel-related reliabilities considering all bits of agmttern frame is processed in one pass of the SDSD. The equations for

with the exception of theith bit o_Ieterminirjga posteriori probabilities a_nd e?<tr_insic informa-
v tion exploit a forward-backward recursion similar to the BC
lexi\x/ \ - [ext] ( _ ,(q)) algorithm [15], [49].
01 () li[lPCD Btk =1by,,) - (16) The a posteriori probabilities P(I, . = q|z¢,z—1,...) =
ﬁ;x P(I,, = q|z;) (no inter-frame relations present) amount to

Using the expressions i_(15) anf_{16), the posteriori 1
probabilities and the extrinsic output of the SDSD can be Pl = qlze) = K ai(q) - Ber(e)  Vael, (21)
computed, depending on the available source statistics. |, ih K, being a normalization constant ensuring

ZQQZI P(l.;, = qlz:) = 1 and oy x(¢) and B;x(¢) being

A. Exploitation of Inter-frame Correlation (AK1-INTER) evaluated in the forward and backward recursions

If a priori information describing the dependency of quan- Q
tization indices between consecutive frames is available, K(q) = 01.1(q) ZP(It.k:qlft.kq:d)at w—1(q) (22)
temporal correlationp is exploited. In this case, theV; ' Ks Pt ’ ' '
indices are modeled by; stationary Markov processds ; DOl
of first order, and thea priori knowledge is given by the =K, t:(2) (23)

probabilitiesP(TTm_ = it7k|{t___1,k =i1—1k) _ o
The a posterioriprobabilities are approximated by [4] Bri1(q) = 1 Z9t,k(d)P(It,k — il =0)Bui(@) (24)
P(I i = qlz1,2i-1,...) = ark(q) Vq e, a7) Ks G=1
with o (q) being evaluated in the inter-frame forward recuiith the initialization

sion 0 arolg) =P(lta=q) Vg€l (25)
1 ~ ~ 1
O‘t,k(Q) = K_l : 9t,k(Q) : ;P(It,k:qutfl,k:@ 'atfl,k(Q) Bt,Nz (Q) = é Vg el. (26)
1 The factorsk, andKs in (22) and[[24) are used to ensure that
“ % 0:x(q) - Avi(q), (18) Z?:1 atk(g) =1 anngQ:1 Bur(g) =1, Vk € {1,...,Nr}.
, L ) The extrinsic information is given by (fof € )
ang K; being a normalization constant ensuring that o
> gm1atk(g) = 1. The valuesagy (the transmission is .. 1 (exi\ ,
assumed to start at time instant 1) are initialized by Fp (bepp=1) = K, Z Oi 1 " (@)Bere(@) Ak (q). (27)
qg=1
aok(q) =Py =q) Vgel. (19) b=t
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10

The factorA; , (q) Z?:l P(lyk=qlltr—1=q)at k-1(q) is
required both in[(22) and(27) and can therefore be computqﬂ
only once and then reused.

APPENDIXB [2]
A PRIORI PROBABILITIES FORAKL-INTRA
MULTI-DIMENSIONAL SDSD
The probability (1, = ¢*|If;, _, = ¢*) is decomposed
using Bayes’ theorem and by exploiting the first order Markoya)
property of the single indices, leading to

P(i;k/ﬁzkul) =

P w (k1) 115 o Gt 0 (k1) 40 06,0 (k7 2) 415 -oos B0 (-2) 4 0) =

(31

(5]
(6]

P4 0 (k1) 415 s S0 (R 1)+ s D0 (R —2)+15 -0 b, 0 (k—2)+0)

P(ig w(kr—2)415 s b, 0 (k—2)+0) [7]

Pitey oy it o 01,0060, oy b g—2041)

P(ite—w, it e—2041)) 18

with the index substitutiort = ¥ (k' — 1) + . By applying .
the chain rule of probability and by exploiting the Markov[ ]
property of neighboring indices, we get [10]

P(i;k/ﬁzkul) =
P(igeliten) - Pligelices) - Pligewlicew)
Pigewlicemwa) - -+ Pliceoute|iseown ) - Pliyeowt)
P(igewlicew) - Pliveoue|iseonm) - Pliveown
= P(igelicen) - Pligealices) - Plisewnlisew)

= P (¢, (ko it w (k-1 yw—1) - Pligw ey lie o e-1))

[11]

[12]
[13]

=P (¢, w (ko i, w (-1 yo—1) - Pligw o1y lie, o (o—2yrw)-

This means that the product of the-1 crossover probabilities [
between each of thé& indices contained in one super index has
to be multiplied by the crossover probability between trst Ia[15]
index of super index; ;, ; (it w(x—2)+w) and the first index
of 474, (it w(r—1)+1). Rewriting this fact using the product
notation and by distinguishing two neighboring super iedic

16
directly leads to (el

P(It*.,k/ = q*|It*,ku1 = ‘j*) =

- [17]
Pl gt —1y+1 =01 L v —2)+0 =G )-

'
18
< [T Pwiw =145 =45 e w1 4j-1 =051 e
j=2

with (19]

3
i =1+ Z (it,(r—1yw4j — 1) Qv [20]
j=1

and thusg* = 1.+ Z;-P:l(qj - 1)QY 7 and ¢* = 1+ |y
Z;'p:1@j - 1)@\1;_]'
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