
ADVANCED H.264/AVC ENCODER OPTIMIZATIONS ON A TMS320DM642
DIGITAL SIGNAL PROCESSOR

Dorian Schneider1,3, Marco Jeub2, Zhou Jun3 and Song Li3

1Department of Electrical Engineering, Berlin University of Technology, Germany
2Institute of Communication Systems and Data Processing, RWTH Aachen University, Germany

3Institute of Image Communication & Information Processing, Shanghai Jiao Tong University, China
schneider@europe.com, jeub@ind.rwth-aachen.de, zhoujun@sjtu.edu.cn, song li@sjtu.edu.cn

This work has been supported by 863 (2008AA01A319) and the Shanghai Key Laboratory of Digital Media Processing & Transmissions

ABSTRACT

This paper discusses the optimization of the H.264/AVC video en-
coder in the context of a modified software implementation on a
Texas Instruments TMS320DM642 digital signal processor. Several
algorithmic optimizations are proposed to improve time critical parts
of the codec like the quantization step and the pixel interpolation.
The algorithms proposed in this paper invoke the Enhanced Direct
Memory Access (EDMA) Controller, intrinsics and look-up tables
to accelerate the encoding and do not affect the image Peak Signal-
to-Noise Ratio (PSNR) or compression performance. The computa-
tional acceleration gain of these algorithms are the foundation of our
real time 30CIF frames/second baseline implementation.

Index Terms— H.264, DSP, Real-time, Optimization, EDMA

1. INTRODUCTION

H.264 is a state of the art video encoder that combines strong com-
pression ratios with good image quality. These advantages are payed
with a considerably higher need of computational power. Therefore,
H.264 real-time implementations on embedded systems with lim-
ited hardware resources become a challenge. However, digital sig-
nal processors (DSP) are a predestinated platform for video encoder
implementations due to their beneficial performance-cost tradeoff.

The TMS320DM642 DSP is part of the Texas Instruments C64x
series. The CPU runs at a clock rate of 600 MHz. The memory of
the DM642 is organized in a 2-level Cache: 32 kByte serve as level
1 (L1) cache and operate at CPU frequency, 256 kByte serve as level
2 (L2) cache. L2 cache (also internal memory) can be configured to
work as RAM or as cache. It operates at half CPU frequency. The
external SDRAM is 32 MByte large and operates at 133 Mhz. The
VelociTI advanced very long instruction word (VLIW) architecture
is a feature of all C64x DSPs that parallelizes code execution by run-
ning up to 8 execution units at the same time. Further, the Enhanced
Direct Memory Access (EDMA) controller is able to manage mem-
ory transfers independently from the CPU. In that way, no additional
overhead is caused when large data blocks are moved between inter-
nal and external memory.

Many researches are done to improve the H.264 encoding speed
on embedded systems. In most cases the encoder core functionalities
are varied [1, 2], resulting in a degradation of the encoder compres-
sion and image Peak signal-to-noise ratio (PSNR). Other work fo-
cuses on improvements of the data flow among the encoder based on
complicated encoder structure changes [3]. This paper presents algo-
rithms that fully take advantage of the TMS320DM642 hardware to

accelerate the H.264 encoding of YUV video files, without altering
the compression performance or the image quality of the encoder.
The EDMA controller, look-up tables and intrinsics are the tools we
invoked to achieve this goal.

We start by introducing a method that simplifies the quantiza-
tion step and discuss an algorithm that uses the EDMA controller
to accelerate the time consuming half-pixel interpolation process.
Further, a method is presented that improves the quarter-pixel inter-
polation part using intrinsics. Finally, we discuss how the EDMA
controller can be used to easily accelerate several time consuming
parts of the encoder.

2. THE QUANTIZATION STEP

H.264 directly combines the integer discrete cosine transformation
(integer DCT) with the quantization step. The H.264 integer DCT
forward transformation is based on a modified DCT that has been
optimized to avoid multiplications and can be entirely carried out
using integer arithmetic. It is defined by

Y = W⊗ E, (1)

whereW is the core transformation [4]

W =

3∑
i=0

3∑
j=0

Ci,jXi,jCT
i,j (2)

and E is a scaling matrix.

E =

⎡
⎢⎢⎣

a2 ab
2

a2 ab
2

ab
2

b2

4
ab
2

b2

4

a2 ab
2

a2 ab
2

ab
2

b2

4
ab
2

b2

4

⎤
⎥⎥⎦ , a =

1

2
, b =

√
2

5
, c =

1

2
. (3)

In Equation (1), ⊗ denotes an element wise multiplication rather
than a matrix multiplication. This scaling matrix E has directly been
incorporated into the quantization process:

Z =
3∑

i=0

3∑
j=0

round
(

Wi,j
Ei,j

Qstep

)
. (4)

Here, Qstep is the quantizer step size. H.264 supports 52 different
values for Qstep, each indexed by the quantization parameter QP .
Z is the quantized output matrix andWi,j , Ei,j refer to Equation (2)

978-1-4244-3298-1/09/$25.00 ©2009 IEEE � � � � � DSP 2009

and Equation (3) respectively. In order to fully avoid divisions, (4)
has been modified to

Z =

3∑
i=0

3∑
j=0

round
(

Wi,j
MF

2qbits

)
, (5)

with
qbits = 15 + floor

(
QP

6

)
(6)

and
MF

2qbits
=

Ei,j

Qstep

. (7)

Using Equation (7), the values for MF can now be calculated
for given matrix indices i and j and a given index quantization param-
eterQP . Finally, Equation (4) can be expressed in integer arithmetic
by

|Zi,j | = (|Wi,j | · MF + f) >> qbits, (8)
with

f = 2qbits

3
; f = 2qbits

6
(9)

for intra macroblocks and inter macroblocks respectively.
The H.264 reference software performs calculations for Equa-

tions (6), (7), (8) and (9) for every macroblock, which results in a
high time consumption for the quantization process. Knowing that
the values for f, MF and qbits only depend on the index parame-
ter QP, we precalculated all possible values for f, MF and qbits for
given QPs and stored the results in look-up arrays. The encoder
parts that were responsible for the calculations of Equations (6), (7)
and (9) have then been replaced with array accesses, indexed by the
quantization parameter QP. Hence, the global encoding time of our
DSP implementation could be accelerated by 6% without altering
the compression performance of the encoder.

3. HALF-PIXEL INTERPOLATION

The AVC/H.264 codec uses an 6-tap FIR filter that interpolates half-
pixels from adjacent integer pixel locations. This text differenti-
ates between three different interpolation schemes: horizontal, verti-
cal and intermediate interpolation. The horizontal interpolation de-
scribes the process of interpolating the left and right adjacent integer
pixels to generate half-pixels. The pixels aa, bb, cc, dd, ee, ff in
Figure 3 are generated in this way. On the other hand, the pixels gg,
hh, ii, jj, kk, ll are generated by the upper and lower adjacent integer
pixels, hence the name vertical interpolation. The intermediate inter-
polation generates the remaining half-pixels (i.e. mm). The process
uses the already generated horizontal or vertical half-pixels as filter
input.

Since the amount of data for a normal video frame is larger than
the capacity of the fast internal memory of the DSP hardware, all
read- and store-operations have to be done on data placed in external
memory (see Figure 3). This causes a tremendous amount of over-
head and cache misses. Without optimization, the half-pixel interpo-
lation process consumes more than 45% of the entire encoding time.
Therefore, we developed an optimized algorithm that invokes the
EDMA controller to preload pixel information into internal RAM.
In fact, the horizontal and vertical pixel interpolation operate on the
same input data, which allows us to ’EDMA transfer’ a macroblock
from external memory into an internal memory buffer while the CPU
is filtering. For that purpose, the algorithm uses an active input buffer
I1 and an passive input buffer I2. Additionally, three internal output
buffers O1-O3 are used.

aa

bb

cc

mm

dd

ee

ff

iihhgg jj kk jj

integer (full) pixel

half pixel

Fig. 1. Half- and quarter-pixel interpolation in AVC/H.264.

When initializing, I1 is filled with data using the EDMA con-
troller. This is the only moment where the CPU has to wait for
a data transfer to finish. Subsequently, the horizontal interpolation
starts processing and stores its output to O1. While the vertical in-
terpolation starts filtering using I1 as input, the EDMA controller is
instructed to fill I2 with subsequent macroblock information. The
vertical output is stored to O2. The intermediate interpolation uses
O1 or O2 as input and stores its output to O3. These operations take
place in an inner loop that iterates until a row has entirely been pro-
cessed. Once a macroblock has been filtered, the buffers I1 and I2
are switched and the loop starts processing the adjacent macroblock.
Once a row of macroblocks has been filtered, the inner loop ends and
the outer loop is triggered. Here, the EDMA controller is instructed
to transfer the output buffers O1-O3 to the corresponding locations
in external memory. At the same time, the inner loop restarts and
processes the next raw. The flow graph for the algorithm is illus-
trated in Figure 3.

Due to the fact that the FIR filter only operates on data stored in
fast internal memory, this pixel preload strategy reduces the neces-
sary instruction cycles for the half-pixel interpolation by 54% with-
out affecting the encoder performance in any way.

4. QUARTER-PIXEL INTERPOLATION

The quarter-pixel interpolation in H.264 uses an 2-tap mean filter
with half-pixels as input. Contrary to half-pixels, quarter-pixels are
not generated entirely for every frame. An analyzer decides if the
generation of quarter-pixels is beneficial for the motion compensa-
tion and if so, the quarter-pixels are interpolated locally. Hence,
the process is far less time consuming than the half-pixel interpola-
tion. On the other hand, this local generation prevents that the pixel
preload strategy discussed in Section 3 can be applied to the quarter-
pixel process because of two reasons: The exact input locations are
not known and EDMA transfers become inefficient with too little
amounts of data.

V

I

Horizontal Interpolation

Vertical Interpolation

Intermediate Interpolation

H16x16

16x16

16x16

16x16

15x15

16x16

16x16

16x16

Frame Data

Horizontal half-pixel data

Intermediate half-pixel data

Vertical half-pixel data

EXTERNAL MEMORY

Fig. 2. JVT/AVC H.264 half-pixel interpolation flow graph for a
signal processor implementation.

In any case, the quarter-pixel interpolation can greatly benefit
from the usage of intrinsics. The C64x series come with a set of
assembly coded functions that enable the programmer to use highly
optimized hardware functions within the C-Code. The AVGU4 in-
trinsic performs an averaging operation on 4 byte of packed data [5].
In that way, the 2-tap mean filter can be replaced with the intrinsic
that can filter 4 bytes simultaneously with a single instruction. Theo-
retically, the quarter-pixel interpolation could be four times faster in
that way, but in practice the input half-pixels are not always aligned
to a byte boundary. Hence, the usage of a second intrinsic becomes
necessary: TheMEM4 intrinsic [6] allows unaligned loads and stores
of 4 bytes of data to memory with a single instruction. The MEM4
intrinsic must be used to load the parameters for the AVGU4 call,
otherwise the output of the mean filter may not be correct .

Altogether, the usage of intrinsics accelerates the quarter-pixel
interpolation by a factor of about 2, without altering the image qual-
ity or the compression ratio.

5. EDMA ENHANCEMENTS

Frequently, large data blocks need to be copied from memory loca-
tions during the encoding of a video frame. In general the C function
memcpy is invoked to handle these data transfers. When using the
memcpy function the CPU needs to monitor the transfer such that
no other operations can be performed meanwhile. As mentioned
earlier, the EDMA controller is a handy tool to carry out these trans-
fers without invoking the CPU. Therefore, we now introduce three
mechanisms that can greatly benefit from the usage of the EDMA
controller. One should be aware that the usage of the EDMA needs
the engineer to take care of cache coherencies by himself. For de-

Intermediate
half-pixels

Vertical
half-pixels

Horizontal
half-pixels

Frame data

DMA I DMA II DMA III DMA IV DMA VI

output buffer 1 (O1)

output buffer 2 (O2)

output buffer 3 (O3)
I1

21x21

I2

21x21
input

buffer 1
input

buffer２

E
X

T
E

R
N

A
L
 M

E
M

O
R
Y

IN
T

E
R

N
A

L
 M

E
M

O
R
Y

}368x16

Fig. 3. EDMA transfer denotations.

tailed information about the EDMA device consider [7] and [8].

At the beginning of the encoding process the video frame needs
to be copied so that data can be manipulated and restored. For that
purpose the Y, U and V samples are transferred in a 2D fashion using
two cascaded loops and the memcpy function. The C6x chip support
library (CSL) provides the EDMA transfer function DAT copy2d [8]
that is able to move 2D data blocks with a single instruction. The
function takes 6 arguments: The transfer type, the source location,
the destination location and the width, height and stride of the data
block. Using three separate function calls, the frame copy process
could be completely handed over to the EDMA device, resulting in
a considerable speed gain of the encoding process.

Before the half-pixel interpolation starts, the video frame is ex-
panded with a several pixel wide frame that surrounds the image on
the upper, lower, left and right sides. The upper and lower bands
are generated by copying the first and last row of the frame consec-
utively into the border. Here, the CSL function DAT copy [8] can be
used to handle the data transfer. To generate the left and right border,
a trickier handling is needed: The first (respectively last) column of
the video frame needs to be copied into an array, so that the vertical
alignment of the data can be transformed to an horizontal alignment.
Again, the next step invokes the DAT copy2d function: A 1D to 2D
transfer type must be used as a function parameter and the destina-
tion stride needs to be set to two. In that way, the horizontal array is
copied into the frame border in a vertical fashion.

Finally, the AVC/H.264 standard works with caches for pixel
data that are used during the frame encoding and copied back when
finished processing. The problematic with these transfers is that the
source stride and the destination stride vary from time to time. It
may occur that the source is a 8x8 block with a stride of 16 and the
destination is a 8x8 block with a stride of 32. Since all EDMA func-
tions only support transfers where source and destination stride are
identical, one can use temporary buffers to overcome the issue. First,
the source frame is copied into a buffer using the EDMA. When all
buffers are filled, a second transfer moved the data from the buffer
to the destination. In order to work properly, it is important that the
buffer width is as wide as the maximum stride of source and desti-
nation.

Process flow
Data storage
Data access

P* = B1
Pt* = B2

 DMA I

wait ID 1

Horizontal
Interpolation

Vertical
Interpolation

Intermediate
Interpolation

 O3

 O2

P*

O1

YES NOPt* = B2?

DMA II DMA I

tmp* = P*
P* = Pt*
Pt* = tmp

Finished processing
row ? YES NO

DMA III DMA IV DMA V

NO YES Finished processing
whole frame ?

IN
IT

IN
N

E
R

 LO
O

P
O

U
T

E
R

 LO
O

P

END

Fig. 4. Improved half-pixel interpolation flow graph. See Figure 3
for the DMA transfer denotations.

6. CONCLUSIONS

This paper proposes advanced optimization strategies to improve the
computational speed of a H.264 DSP video encoder implementation.
The discussed algorithms and techniques accelerate the video pro-
cessing by utilizing C64x DSP appropriate characteristics and tools.
The output of the encoder is not altered in any way. Altogether, the
proposed methods allow a global speed gain of about 55%. Hereby,
the most important acceleration factor is the improved half-pixel in-
terpolation scheme with about 31% global speed gain.

Table 1 summarizes the optimized results by listing the accelera-
tion gain for every proposed algorithm. The speed gain in percent in-
dicates the speed improvement between our H.264 baseline encoder
version incorporating the indicated algorithm and the same encoder

version without the algorithm. The measurements were done using a
Texas Instruments TMS320DM642 DSP board, 600MHz CPU clock
rate and a 224 kB / 32 kB RAM/Cache configuration for the internal
memory. The foreman CIF video stream [9] has been used as test
sequence.

Algorithm speed gain speed gain[
cycles.s−1

]
[%]

Quantization look-up tables 2.64e6 6

Half-pixel interpolation 12.8e7 31

Quarter-pixel interpolation 6.42e6 15

EDMA transfers 1.30e6 3

Table 1. Encoder acceleration for various optimized H.264 algo-
rithms.

7. REFERENCES

[1] Hong-Jun Wang, Yan yan Hou, and Hua Li, “H.264/AVC video
encoder algorithm optimization based on TI TMS320DM642,”
in Proc. Third International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing IIHMSP 2007,
26–28 Nov. 2007, vol. 1, pp. 529–532.

[2] Wen-Nung Lie, Han-Ching Yeh, T. C. I. Lin, and Chien-Fa
Chen, “Hardware-efficient computing architecture for motion
compensation interpolation in H.264 video coding,” in Proc.
IEEE International Symposium on Circuits and Systems ISCAS
2005, 23–26 May 2005, pp. 2136–2139.

[3] Li Zhuo, Qiang Wang, D. D. Feng, and Lansun Shen, “Op-
timization and implementation of H.264 encoder on DSP plat-
form,” in Proc. IEEE International Conference on Multimedia
and Expo, 2–5 July 2007, pp. 232–235.

[4] Iain Richardson, H.264 and MPEG-4 Video Compression:
Video Coding for Next-generation Multimedia, John Wiley &
Sons Ltd, Chichester, UK, 2003.

[5] Texas Instruments, TMS320C6000 Instruction Set Simulator
and Technical Reference Manual, 2008, SPRU732G.

[6] Texas Instruments, TMS320C6000 Optimizing Compiler Users
Guide, 2005, SPRU187N.

[7] Texas Instruments, TMS320C6000 DSP Enhanced Direct
Memory Access (EDMA) Controller Reference Guide, 2005,
SPRU234B.

[8] Texas Instruments, TMS320C6000 Chip Support Library API
Reference Guide, 2004, SPRU401J.

[9] Arizona State University, Repository of video test se-
quences of the Video Traces research group, 2009,
http://trace.eas.asu.edu/yuv/index.html.

