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Abstract — In this paper, three previously proposed non-
coherent sequence estimation (NSE) schemes are com-
pared for two important applications: convolutionally
coded MPSK transmission over the AWGN channel and
differential MPSK transmission over intersymbol in-
terference (ISI) channels. We show that the influence
of the rectangular observation window employed by all
considered NSE schemes can be described by the same
nonrecursive amplitude and phase reference symbols.
In order to increase the computational efficiency, we
propose an infinite but exponentially decaying observa-
tion window. In this case, the reference symbols can
be generated in a recursive way. We investigate how
the performance of the considered NSE schemes is in-
fluenced by the type of observation window used, the
observation window size, and reduced–state decoding.

1. Introduction

In this paper, noncoherent sequence estimation (NSE) for
convolutionally coded � –ary phase–shift keying (MPSK)
transmission over the additive white Gaussian noise
(AWGN) channel and uncoded differential MPSK
(MDPSK) transmission over intersymbol interference (ISI)
channels is considered. For both applications NSE is a fa-
vorable choice if carrier synchronization is too complex
or not feasible. The main advantage of NSE (and any
noncoherent receiver) is that all problems associated with
synchronization circuits such as acquisition, tracking, false
lock detection, false lock prevention, etc., are circumvented
[1].
In contrast to coherent MLSE, optimum NSE cannot be
implemented using the Viterbi algorithm (VA) since a re-
cursive metric calculation is not possible, i.e., a tree search
is necessary and complexity increases exponentially with
the number of transmitted symbols. Another problem is
that for derivation of the optimum NSE metric the chan-
nel phase is assumed to be constant for the entire trans-
mission. In practice, however, the channel phase is often
slowly time–variant and optimum NSE suffers from severe
performance degradations.
In the last decade a variety of suboptimum NSE schemes
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] have been pro-
posed to overcome the aforementioned problems. These
NSE schemes are derived from optimum NSE and most of
them use an observation window of a finite size � , ���	� ,
whereas the schemes in [6] and [13] employ an infinite but
exponentially decaying observation window with a forget-
ting factor 
 , ���
���� . Both � and 
 enable a trade–off
between power efficiency for constant phase and robust-
ness against phase variations.
The above cited suboptimum NSE schemes may be di-
vided into three classes. The schemes proposed in [3, 7]
belong to the first class, where a limited tree search is
used for decoding. Since, in general, it is more conve-
nient to use a trellis for decoding, we do not consider this
approach in the following. The NSE schemes of the sec-
ond class [5, 9, 10] are motivated by multiple–symbol de-
tection [15, 16], i.e., one branch in the decoding trellis

embraces several branches of the original code (ISI) trel-
lis. Therefore, a decoding trellis with the same number of
states as the original trellis results. However, the number of
branches originating from each trellis state is higher than in
the original trellis. E.g., in the ISI case the number of trel-
lis branches per decoded symbol is ��������������� ��! times
higher than in a corresponding coherent receiver [10]. Un-
fortunately, for these schemes complexity reduction is very
difficult since a reduction of branches or states leads to
a significant performance degradation. Thus, in practice,
NSE schemes belonging to the second class can only be
applied for small observation windows and will also not be
regarded in the following. The NSE schemes of the third
class [2, 4, 8, 11, 13, 14] use an augmented code (ISI) trel-
lis to account for the influence of the received symbols con-
tained in the observation window, i.e., the number of states
is increased whereas the number of branches per state is
the same as in the original trellis. In this case, complexity
(number of states) can be controlled easily by per–survivor
processing [17] (cf. [4, 8, 11, 12, 13, 14]). Therefore, these
NSE schemes are well suited for implementation and will
be compared in this paper.
Our contributions are as follows. First, we highlight the
similarities and the differences of the NSE schemes pro-
posed by Raphaeli et al. [8, 12] (referred to as R–NSE),
Colavolpe and Raheli [11]1 (CR–NSE), and Zhang et al.
[14] (ZMLG–NSE). Second, we generalize the concept of
the exponentially decaying observation window [6, 13],
which conveniently enables the recursive calculation of the
reference symbols, to all considered NSE schemes. Last,
we investigate how a reduction of the observation window
size or the number of states affects the performance of the
considered NSE schemes.

2. Transmission Model

The considered discrete–time transmission model is de-
picted in Fig. 1. All signals are represented by their com-
plex–baseband equivalents and " –spaced sampling is as-
sumed. Thus, the received signal samples are given by

#%$ &('*),+.-0/213$ &('�4�56$ &('87 (1)

where & denotes the discrete–time channel symbol index.9
and 56$ &(' are a constant uniformly distributed phase shift

and white Gaussian noise, respectively. Due to an ap-
propriate normalization 56$ &%' has variance :;�< ) �>=?�?@BA ,
where �C= and @BA refer to the single–sided power spec-
tral density of the underlying continuous–time passband
noise process and the mean received energy per symbol,
respectively. 13$ &(' is the received (noise–free) signal com-
ponent which depends on the MPSK information symbolsD�$ EF'HGJIK)MLN+ - �0OQPSRUTWV X GYL � 7 � 73ZSZSZN7 �[�\�^]Q] with
discrete–time information symbol index E . The estimated
information symbols _D`$ba ' are delivered with a decision de-
lay E = (cf. Fig. 1). In order to become more specific, in the
following we distinguish two cases.

1The schemes in [2] and [4] may be considered as special cases of the
more general scheme of [11].



a) Convolutionally coded MPSK transmission: In this case,
the code symbols � $ &(' are generated by an � –ary nonco-
herently non–catastrophic convolutional encoder (CC) [8]
from the information symbols D`$ EF' . Here, a non–dispersive
channel is presumed, i.e., 1`$ &(' ) � $ &%' is valid. For sim-
plicity, we restrict ourselves to code rates ��� ) ����� , � GL � 7�� 73ZSZNZ ] . The constraint length of the code is denoted
by � .

b) MDPSK transmission over ISI channels: For MDPSK
transmission over ISI channels, a differential encoder (DE)
is employed, i.e., & ),E holds and the MDPSK symbols are
obtain from � $ &('`),D`$ &('%a � $ & �W� ' . The noise–free symbols1`$ &(' are given by

13$ &('�)
	 ��
�  � = �

 � $ & ��� 'F7 (2)

where
� 

, � ���B����� � , denotes the coefficients of the
discrete–time overall channel impulse response. Now, �
refers to the length of the channel impulse response.
The CC and the combination of DE and discrete–time ISI
channel can be modeled as a finite state machine, respec-
tively, and thus, the same NSE techniques can be employed
in both cases.

Figure 1: Block diagram of the transmission model.

3. Noncoherent Sequence Estimation

3.1. Optimum NSE

If we assume the transmission of a block of ��� information
symbols which are collected in a vector � , the block of
estimated symbols �� can be obtained from the noncoherent
maximum–likelihood decision rule [18, 10, 11]�� )��������! #"$% L'&)(+*`$ �3� � � 4 �W�-, ! ' ] (3)

with the optimum metric

& (+* $ �`���.� 4 � �/, ! '10) �
: �<
243 �6587 	 �:9!;�< � = V>=1`$ &(' V �

�@? "/AB�C = AB �: �<
DDDDDD 2�3 �E587

	 ��9!;�< � = #%$ &(' =1GF^$ &(' DDDDDD
HIJHI

(4)

where C = � a ! refers to the zeroth order modified Bessel func-
tion of the first kind and � denotes the constraint length of
the code or the length of the ISI channel ( � ) � holds for
the ISI case). For coded MPSK , ) � is valid, whereas, ) � is necessary for MDPSK since in the latter case
the first transmitted symbol � $ � ' is required as reference
for the following symbols, i.e., � $ � ' cannot be recovered
at the receiver. The hypothetical noise–free symbols =13$ &(' ,
��� & ���3� � � 4 ���K, ! , are uniquely associated with
a hypothetical information sequence L� via convolutional
encoding or via the DE and the channel impulse response.
In practice, it is desirable to avoid the cumbersome mod-
ified Bessel function. For this purpose, two approxima-
tions are commonly used. Namely, ? " � C = � V M V !0! may be

approximated by V M V � or V M V [8, 11]. The first approach
only leads to acceptable results if the first sum in (4) is
of no importance, i.e., if V>=1`$ &(' V is constant for all & andL� (cf. [11, 12, 19]), which is e.g. true for ISI–free MPSK
transmission. However, even if V>=13$ &(' V ) const., N & , holds,
the second approximation is preferable since it leads to a
better performance of the suboptimum NSE schemes de-
rived from optimum NSE (cf. [11] for a comparison for
CR–NSE). Therefore, in the following, ? " � C = �0V M V ! !!O�V M V
is used exclusively and hence, the optimum metric may be
replaced by the quasi–optimum metric

&QP(+* $ �3� �.� 4 � �R, ! '?)2�3 �65S7 	 �:9!;�< � = VT=13$ &(' V � � � DD
2�3 �E587 	 �:9�;�< � = #�$ &(' =1GF $ &(' DD Z

(5)
Unfortunately, & P(+* $ �3� � � 4 � �U, ! ' cannot be calculated
recursively. Another problem is that performance degrades
severely if the phase is not approximately constant over the
entire block of transmitted symbols. In order to overcome
these problems, three suboptimum NSE schemes are con-
sidered.

3.2. Suboptimum Schemes Using Nonrecursive Refer-
ence Symbols

In the following, three suboptimum schemes are discussed.
These schemes are derived from optimum NSE but use a
finite observation window of size � . We will show that in
each case the influence of the � �	� previous signal sam-
ples received at times & ��� 4 � 7 & ��� 4 � 7;ZSZSZS7 & �	�
on the metric at time & can be subsumized in an amplitude
and a phase reference symbol.

a) ZMLG–NSE: ZMLG–NSE has been recently proposed
by Zhang et al. [14]. Here, the quasi–optimum metric is
evaluated only for the � most recent observed signal sam-
ples #%$ & � X ' , � � XH� � �	� , i.e., the metric to be mini-
mized is&QV4(+*�WB$ &('X0) V>=1`$ &(' V � 4 =1 �Y[Z8\ $ & � � ' �B� V #�$ &(' =1]F $ &%' 4 =^ Y[Z8\ $ & � � ' V 7

(6)
where the nonrecursive amplitude and phase reference sym-
bols are given by

=1 �Y[Z8\ $ & � � 'X0) ����
�
P � 
 V>=13$ & ��X ' V � (7)

and =^ Y[Z8\ $ & � � '�0) ���:
�
P � 
 #�$ & ��X ' =1�F $ & �WX '87 (8)

respectively.

b) R–NSE: For R–NSE, which has been introduced by Ra-
phaeli et al. [8, 12], the quasi–optimum metric for � ob-
served signal samples is used as incremental metric_�` $ &%' 0) V>=13$ &%' V � 4 =1 �Y[Z8\ $ & ��� ' �W� V #%$ &(' =1 F $ &('(4 =^ Y[Z8\ $ & ��� ' V

(9)
and the accumulated metric to be minimized is calculated
recursively from& ` $ &>4 � '�)a& ` $ &('�4 _�` $ &%'F7 (10)

i.e., maximally overlapped observations [8] are used.

c) CR–NSE: Colavolpe and Raheli defined the branch met-

ric
_ Pb ` $ &('c0)a& P(+* $ &24 � ' � & P(+* $ &(' which is the difference



of two quasi–optimum metrics. If the phase memory [11]
is limited to � ��� symbols, the resulting branch metric_ b ` $ &(' can be written as_ b ` $ &('`) V>=13$ &(' V � � � V #�$ &(' =1�FQ$ &('F4 =^ YTZ8\ $ & �C� ' V 4 � V>=^ YTZ8\ $ & � � ' V Z

(11)
The accumulated metric is given by& b ` $ & 4 � '`)K& b ` $ &%'%4 _ b ` $ &('FZ (12)

From the above considerations it is obvious that the con-
sidered suboptimum NSE schemes are closely related. All
schemes employ a nonrecursively generated phase refer-
ence symbol =^ Y[Z8\ $ & �	� ' . If the hypothetical symbols nec-
essary for generation of =13$ & � X ' , � �,X ��� � � , coincide
with the actually transmitted information symbols and the
channel noise is neglected, #�$ & ��X ' )\+ -0/ =13$ & � X ' , � �
X � � ��� , is obtained. In this case, =^ Y[Z8\ $ & ��� '`)	+ -0/ a M ,M G�� 7 , results, i.e., =^ Y[Z8\ $ & �	� ' provides an estimate for
the phase difference between #�$ a ' and =1�$ba ' . ZMLG–NSE
and R–NSE also require an amplitude reference symbol=1 �YTZ8\ $ & � � ' , which allows a similar interpretation. Note
that for ISI–free transmission both VT=1`$ &%' V � and =1 �Y[Z8\ $ & � � '
may be omitted in the above metrics (cf. (6), (9), (11)).
For all considered suboptimum NSE schemes a trellis may
be used for decoding. In order to limit the complexity, per–
survivor processing [17] can be adopted, i.e., the hypothet-
ical symbols =D`$ E � X ' , ��� X ��� , are defined by the
transition =� $ EF' 0)�$ =D`$ EF' =D $ E � � ' ZNZSZ =D`$ E ��� 'b' (13)

from state=� $ E�' 0)�$ =D`$ E � � ' =D�$ E ��� ' ZNZSZ =D`$ E ��� 'b' (14)

to state =� $ E 4 � ' in the underlying trellis diagram. The
number of states is � ) �	� . For X�
�� the hypothetical
symbols =D`$ E �CX ' are replaced by estimated symbols _D�$ E �CX '
taken from the surviving path terminating in =� $ EF' .
3.3. Suboptimum Schemes Using Recursive Reference
Symbols

Simulations show that for a constant channel phase all sub-
optimum NSE schemes discussed in Section 3.2 become
more power efficient if the observation window size � is
increased. However, at the same time the number of terms
to be added for calculation of the amplitude and phase ref-
erence symbols also increases (cf. (7), (8)). To overcome
this problem, for CR–NSE and MDPSK transmission over
ISI channels an exponentially decaying infinite observa-
tion window has been proposed in [13] since for this type
of window the reference symbols can be calculated recur-
sively in a very efficient way. Here, we extend this concept
to coded MPSK transmission and to ZMLG–NSE and R–
NSE.
The reference symbols in (7), (8), can be obtained from the
optimum reference symbols =1 �Y[Z8\ $ & � � '�)���P � 
 V>=13$ & � X ' V �and =^ Y[Z8\ $ & ��� '*)����P � 
 #�$ & ��X ' =1GF^$ & ��X ' by application
of a rectangular window of length � � � . This measure
limits the memory and thus, slow phase variations can be
tolerated. However, from a practical point of view an ex-
ponentially decaying window is better suited. This leads to
the modified reference symbols

=1 �Y[Z8\ $ & ��� ' 0) ��
P � 
 
 P?�:
 V>=13$ & �WX ' V � 7 (15)

=^ Y[Z8\ $ & ��� ' 0) ��
P � 
 
 P��:
 #�$ & ��X ' =1�FQ$ & �WX '87 (16)

where 
 , �	�J
���� , denotes a forgetting factor which
also limits the memory.
From (15) and (16) we obtain the recursive relations=1 �Y[Z8\ $ & ��� 'B) 
 a =1 �Y[Z8\ $ & �W� '%4 V>=13$ & ��� ' V � 7 (17)=^ Y[Z8\ $ & ��� 'B) 
 a =^ YTZ8\ $ & �W� '%4 #%$ & ��� ' =1�F $ & ��� ' (18)

These recursive reference symbols are employed for
ZMLG–NSE, R–NSE, and CR–NSE in the metrics given
by (6), (9), and (11), respectively. The transitions and
states can be defined as in the nonrecursive case (cf. (13),
(14)). Each path in the trellis has its private reference sym-
bols =1 �Y[Z8\ $ & � � ' and =^ Y[Z8\ $ & �W� ' , which are updated accord-
ing to (17) and (18) using the previous reference symbols=1 �YTZ8\ $ & �W� ' and =^ Y[Z8\ $ & ��� ' of the same path.
The number of arithmetic operations is independent of for-
getting factor 
 but grows with observation window size �
for the nonrecursive reference symbols. Thus, the savings
in computational complexity offered by the recursive ref-
erence symbols increase with increasing power efficiency.
A comparison of the nonrecursive and the recursive ref-
erence symbols also shows that both are identical for the
special cases � ) � ( ����� ) and 
 ) � ( 
�� � ).
It should be mentioned that a recursive phase reference
symbol was also used in [6]. This scheme could also be
obtained using our approach if we started from CR–NSE
and used the approximation ? " � C = �0V M V ! ! O V M V � .

4. Comparison of Suboptimum NSE Schemes

4.1. Observation Window Size and Forgetting Factor

From (6), (9), and (11) it can be seen that ZMLG–NSE and
R–NSE/CR–NSE are affected quite differently by the ref-
erence symbols and thus, by � and 
 . For large values of
� and 
 (and a sufficiently large number of states), in prin-
ciple, all schemes can approach coherent MLSE, however,
for practically interesting cases ( � � �^� and 
 �Y� Z � )
there are important differences.

a) ZMLG–NSE
In this case, =1 �Y[Z8\ $ & �,� ' and =^ Y[Z8\ $ & � � ' are directly
employed for calculation of the accumulated met-
ric & V4(+*�W $ &(' (cf. (6)). Therefore, a reduction of �
( 
 ) does not only decrease the phase memory but
also the code (ISI) memory taken into account for
NSE. This causes a large performance degradation
for practical values of � ( 
 ).

b) R–NSE and CR–NSE
(9) and (11) show that for R–NSE and CR–NSE only
the branch metrics are affected directly by =1 �YTZ8\ $ & �
� ' and =^ Y[Z8\ $ & � � ' , i.e., the accumulated metric is
influenced in an indirect way. As a consequence, a
reduction of � ( 
 ) does not influence the code (ISI)
memory taken into account for NSE. For this reason
an acceptable performance of these schemes can also
be expected for small values of � ( 
 ).

From the above considerations and our simulation results
in Section 5, we can conclude that ZMLG–NSE can only
be applied if the channel phase is approximately constant
over that number of symbol intervals for which all paths
in the trellis have merged. Unfortunately, this rules out



most practical interesting applications of NSE2. Thus, for
the rest of this section, we concentrate on R–NSE and CR–
NSE.

4.2. Nonrecursive vs. Recursive Reference Symbols

In general, it is very difficult to quantify the influence of
� or 
 due to the nonlinear character of NSE. Analytical
results may be found in [8] and [21] for R–NSE and CR–
NSE with nonrecursive reference symbols, respectively. In
both cases, coded MPSK transmission over the non–disper-
sive AWGN channel is regarded.
Here, we want to emphasize the differences and similari-
ties of nonrecursive and recursive reference symbols. For
this, it is convenient to consider transmission over pure
AWGN channels and ISI corrupted channels separately.

a) Coded MPSK over AWGN channel: In this case, only the
phase reference symbol is of importance since V>=1�$ &(' V ) � ,N�L� , is valid. For a simple comparison, we may calculate
the signal–to–noise ratio (SNR) of the nonrecursive and the
recursive reference symbol which is defined as������� 0) V � L =^ Y[Z8\ $ & ��� ' ]%V �� L VT=^ Y[Z8\ $ & � � ' ��� L =^ Y[Z8\ $ & ��� ' ]%V � ] (19)

( � L(a ] denotes expectation), where =13$ &('3),13$ &(' , i.e., =D`$ &('`)D�$ &(' , N & , is assumed. Despite the convolutional coding, in
general, � L � $ &(' � F $ � ' ] ) � , &	�) � , is fulfilled. Thus, from
(8) and (16) we obtain�����
� ) � ���

: �< (20)

and ������� ) � 4 

: �< � � � 
 ! (21)

for the nonrecursive and the recursive reference symbol,
respectively. Using (20) and (21), it can be easily shown
that both reference symbols have the same SNR for


 ) � � ��
Z (22)

Extensive simulations have shown [22] (cf. also Section
5) that the SNR of the reference symbol is a meaningful
performance measure for CR–NSE, i.e., if � and 
 are
chosen according to (22), the receivers with nonrecursive
and recursive reference symbol achieve approximately the
same BER. On the other hand, for R–NSE, in general, the
receiver with recursive reference symbol has a better per-
formance than that with nonrecursive reference symbol if
the parameters are chosen according to (22).

b) MDPSK over ISI channels: Because of the non–constant
magnitude of =13$ &(' , the SNR of the reference symbol is
not a meaningful parameter for the BER performance if
the channel is corrupted by ISI. Here, other properties of
the reference symbol may dominate the performance. In
particular, there are channel impulse responses (e.g.

� = )� 
 ) ���� � , � ) � ) for which 13$ &('�) � 	 �:
 � = �  � $ & � � '�) �
results for certain combinations of transmitted MPSK sym-
bols � $ & �U� ' , �� � � � � � . This means that there are cer-
tain combinations of symbols � $ & � � '87 � $ & � � 'F7NZSZSZ 7 � $ & �

2In [14] uncoded quadrature amplitude modulation (QAM) is consid-
ered where paths merge quickly and acceptable performance of ZMLG–
NSE can also be achieved for relatively small values of � ( � ). How-
ever, in that special case, sequence estimation is not necessary at all
(cf. e.g. [20]).

� � � 4 � ' for which the nonrecursive phase reference
symbol ((8)) is zero. Hence, the phase reference is lost and
the occurance of an error event becomes very likely. Since
this loss of phase reference is independent of the channel
noise variance, it leads to an error floor which is approxi-
mately proportional to ���.� ����
 . For the recursive refer-
ence symbol with 
 
,� these problems do not exist. (16)
shows that here an infinite number of (weighted) symbols
are added, i.e., the probability that all of them vanish is
zero.
On the other hand, if 13$ &%'��) � , N�� $ a ' , is valid or if 13$ &%'�) �
is very unlikely, which is true e.g. for time–variant fading
channels, the respective schemes with nonrecursive and re-
cursive reference symbol show a similar performance if �
and 
 are chosen accordingly [23].

4.3. Influence of State Reduction

It has been shown in [8] and [11, 21] for R–NSE and CR–
NSE, respectively, that both schemes can approach the per-
formance of coherent MLSE if a full–state Viterbi algo-
rithm is used for decoding. Unfortunately, in general, full–
state NSE requires a larger number of states than coherent
full–state MLSE. Therefore, in practice, reduced–state de-
coding is more interesting. For ISI channels a full reduc-
tion to only one state is possible. In this case, for both R–
NSE and CR–NSE the same noncoherent decision–feed-
back equalizer (NDFE) results [24, 19]. However, if more
than one state is used for decoding both schemes are dif-
ferent. Here, for simplicity, we consider ISI–free transmis-
sion. Thus, for R–NSE the simplified incremental metric_ P` $ &%'`) �CV #�$ &%' =1 F $ &('04 =^ YTZ8\ $ & � � ' V might be used. If we as-
sume ��� � or 
�� � , V>=^ YTZ8\ $ & � � ' V�� V #�$ &%' =1GF $ &%' V is valid
as long as the majority of hypothetical/estimated informa-
tion symbols, which are defined by the state/surviving path
and used for generation of =^ Y[Z8\ $ & � � ' , coincides with the
actually transmitted information symbols. Thus, if we use
the relation V � 4�� V�O�� 4���L�� ] ( ��L(a ] denotes the real part
of a complex number), � G�� , which holds for V � V�� � ,
we obtain_ P` $ &(' ) �CV>=^ Y[Z8\ $ & ��� ' V a DDDD � 4 #�$ &%' =1 FQ$ &%'=^ Y[Z8\ $ & ��� ' DDDDOW�CV>=^ Y[Z8\ $ & ��� ' V � ���U#%$ &(' =1 F^$ &(' =^�FY[Z8\ $ & � � 'VT=^ Y[Z8\ $ & � � ' V � (23)

The second term in (23) can be interpreted as coherent
MLSE metric with incorporated phase estimation since=^�FY[Z8\ $ & � � ' � V>=^ Y[Z8\ $ & �\� ' V!O + � -0/ holds for the correct
path for a constant channel phase. However, the first term
VT=^ Y[Z8\ $ & � � ' V is not present in the coherent MLSE met-
ric. Therefore, if we employ per–survivor processing, erro-
neous estimated symbols in the surviving path do not only
affect the phase estimate incorporated in the R–NSE met-
ric but do also influence

_ P` $ &(' via V>=^ Y[Z8\ $ & �,� ' V . Our sim-
ulations show that this has a negative effect on the perfor-
mance of R–NSE, i.e., if the simple reduced–state decod-
ing algorithm based on per–survivor processing and dis-
cussed in Sections 3.2, 3.3 is employed, in general, the
performance of a coherent receiver cannot be approached.
For R–NSE this simple algorithm is similar to the basic
decision feedback algorithm (BDFA) proposed in [25]. In
[25] also more sophisticated reduced–state techniques are
presented to overcome the limitations imposed by the R–
NSE metric. However, these algorithms are more complex
and we will show that they are not necessary if CR–NSE is
employed.



If we make the same assumptions as above also for CR–
NSE and use the simplified metric

_ P Pb ` $ &('`) �CV #�$ &%' =1 F $ &(' 4=^ Y[Z8\ $ & �	� ' V 4 VT=^ Y[Z8\ $ & � � ' V , we obtain_ P Pb ` $ &(' O � ��� #%$ &(' =1 F $ &(' a =^�FYTZ8\ $ & � � 'V>=^ YTZ8\ $ & � � ' V � 7 (24)

i.e., the CR–NSE metric is identical with the coherent
MLSE metric with incorporated phase estimation. Our
simulations show that, in this case, the performance of co-
herent MLSE can be approached if � or 
 are chosen suf-
ficiently large.

5. Simulation Results

a) Coded MPSK over AWGN channel: For coded QPSK
transmission over the AWGN channel we adopt a code
with � � ) � � states and generator polynomials � 
 )� � 7�� 7�� ! and � �

) �F� 7�� 7 ��! (base–4 representation) pro-
posed in [8] ( � ) � , � � ) �?�^� ). Extensive simula-
tions using various codes showed that for all investigated
NSE schemes a favorable trade–off between complexity
and performance can be achieved by using � ) � a � �
states for decoding [22]. Thus, in the following, � ) ���

states are adopted for all considered NSE schemes, whereas
for coherent MLSE � ) � � ) � � states are employed for
decoding, of course.
Fig. 2 shows BER vs. �N� ?�� � 
 = ��@ � � � = ! ( @ � is the received
energy per information bit) for ZMLG–NSE, R–NSE, CR–
NSE, and coherent MLSE. For Figs. 2a) and b) nonrecur-
sive and recursive reference symbols are used, respectively.
Apparently, ZMLG–NSE degrades severely for small val-
ues of � and 
 (cf. Section 4.1). Even for 
 ) � Z �
ZMLG–NSE performs worse than CR–NSE with 
 ) � Z � .
On the other hand, CR–NSE always outperforms R–NSE if
the same value of � ( 
 ) is used in both cases. For the non-
recursive reference symbol with � )�� and � )
	 there
is a gap of approximately � Z�	�� dB between R–NSE and
CR–NSE. In the recursive case, this gap is smaller, how-
ever, for R–NSE with 
 ) � Z � there remains still a gap
of � Z�	 dB to coherent MLSE, whereas this gap is only � Z �
dB for CR–NSE with 
 ) � Z � . This supports our results
from Section 4.3, i.e., R–NSE with simple state reduction
techniques cannot approach coherent MLSE. Note that for
CR–NSE the curves for � ) � ( � )�� ) and 
 ) � Z �
( 
 ) � Z � ) are approximately identical, i.e., (22) turns out
to be a good rule of thumb in this case. This has been also
confirmed for other codes in [22].
In Fig. 3, the robustness of the considered suboptimum
NSE schemes against phase jitter is assessed. The same
code as above is used and �N� ?�� � 
 = � @ � �.�>=N! ) �

dB is
valid. Here, the phase

9 $ &(' is modeled as Wiener process,
i.e., the sequence of phase changes is a white Gaussian
process with variance :*� over " . The robustness against
phase jitter decreases with increasing � and 
 . Obvi-
ously, the schemes with nonrecursive and recursive refer-
ence symbol show a similar robustness.
In [6], it was observed that NSE with recursive reference
symbol is as sensitive to phase variations as coherent MLSE
with a phase–locked loop (PLLs). However, in [6] 
 was
chosen close to � ( 
 ) � Z � � ) which explains the sensitivity
of the resulting NSE scheme to phase variations. Note that
NSE with a corresponding nonrecursive reference symbol
(i.e., � )�� � ) would show a similar behavior.
In [12], it was reported that CR–NSE is more sensitive to
phase variations than R–NSE. However, these results can-
not be confirmed here. Fig. 3 shows that CR–NSE and
R–NSE have a similar robustness against phase variations.

From Figs. 2, and 3 we conjecture that ZMLG–NSE is not
well suited for practical applications and therefore, will not
be considered in the following.

b) Uncoded MDPSK over ISI channels: Figs. 4a) and b)
show BER vs. �N� ?�� � 
 = ��@ � � �C= ! for nonrecursive and re-
cursive reference symbols, respectively, for a channel with
impulse response

� = ) � 
 ) �?� � � ( � ) � ) and QDPSK
modulation, i.e., 13$ &('2) � is possible. For equalization of
ISI channels, in general, NSE achieves high performance
if the same number of states is used like for coherent full–
state MLSE [19]. Hence, here � ) � is adopted for both
NSE and coherent MLSE. As predicted in Section 4.2b),
both CR–NSE and R–NSE suffer from an irreducible error
floor, which is approximately proportional to ��� � ����
 , if
nonrecursive reference symbols are used. The error floor
is avoided if a recursive reference symbol with 
 
�� is
employed. For � ) � and 
 ) � the nonrecursive and the
recursive reference symbols are identical and CR–NSE and
R–NSE have practically the same performance for these
parameters. In general, however, again CR–NSE outper-
forms R–NSE. For R–NSE also for � ) � � and 
 ) � Z �
a considerable gap to coherent MLSE remains.
Another possible field of application for NSE is mobile
communications [23]. Further simulations have shown that
R–NSE and CR–NSE achieve a similar performance for
typical mobile channels [19].

Figure 2: BER vs. �N� ?�� � 
 = � @ � � �C= ! for coded QPSK
transmission with the considered NSE schemes ( � ) ��� )
and coherent MLSE ( � ) � � ).

6. Conclusions

In this paper, ZMLG–NSE, R–NSE, and CR–NSE have
been compared for coded MPSK transmission over the
AWGN channel and uncoded MDPSK transmission over
ISI channels. We have shown that all considered schemes
employ nonrecursive amplitude and phase reference sym-
bols but may be easily extended to incorporate recursive
reference symbols which can be updated more efficiently.
A detailed comparison has revealed that ZMLG–NSE is
not well suited for most practical applications since it works
only well as long as a relatively large observation win-
dow is used. However, this excludes channels with time–
varying phase. R–NSE and CR–NSE are both well suited
for application, however, if a simple reduced–state decod-



Figure 3: BER vs. jitter standard deviation :  per mod-
ulation interval " for coded QPSK transmission with the
considered NSE schemes ( � ) ��� ).

Figure 4: BER vs. �N� ?�� � 
 = ��@ � � �C=N! for QDPSK trans-
mission over an ISI channel with impulse response

� = )� 
 ) ��� � � ( � ) � ).
ing algorithm based on per–survivor processing is applied,
CR–NSE is preferable since it offers a better performance.
It has also been shown that the recursive reference symbol
compares favorably with the nonrecursive one and thus,
can be recommended for all considered NSE schemes.
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