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ABSTRACT

Iterative source-channel decoding (ISCD) aims at the exploita-
tion of the time-variant residual redundancy of the source sam-
ples, e.g., source codec parameters, for error concealment and
quality improvements. In most previous publications the re-
ceiver had perfect knowledge of the amount of residual redun-
dancy. This assumption would require a reliable, i.e. highly
redundant, transmission of side information. In contrast, in this
paper we present a relatively simple scheme, yet efficient and
robust, by which the residual redundancy at the receiver can
be estimated accurately without any side information, and then
can be exploited adaptively. We present the achievable perfor-
mance gains in an ISCD system including the estimation of the
residual source redundancy at the receiver for various scenar-
ios. Several methods of different performance and computa-
tional complexity are proposed, with some of them even out-
performing a system with perfect side information. The latter,
not quite intuitive fact, is explained in the paper.

I. INTRODUCTION

In recent years the application of the Turbo principle, i.e., the
exchange of extrinsic information between at least two receiver
components, has been expanded from channel coding to the
whole receiver chain. This extension results in a steady ap-
proach of the Shannon limit with only a moderate rise of com-
plexity.

In iterative source-channel decoding (ISCD)1 [1, 2, 3] the
residual redundancy of source codec parameters such as pre-
dictor coefficients or scale factors of speech, audio, and video
signals is exploited in a Turbo process. Due to imperfect
source coding, which results from complexity and delay con-
straints, the source coded signal still contains a non-negligible
amount of residual redundancy. The a priori information of
this redundancy, e.g., a non-uniform probability distribution or
an autocorrelation, is used in a soft decision source decoder
(SDSD) [4, 5]. The SDSD, which possesses error concealing
capabilities rather than error correcting capabilities, iteratively
exchanges extrinsic information with a channel decoder.

1Note that the term iterative source channel decoding is also used in a dif-
ferent context, i.e., for the iterative evaluation of variable-length source codes
and channel codes. Here, ISCD is used to reconstruct the most probably sent
source parameter from the channel decoded soft bit stream of fixed length.

For the reconstruction of the transmitted source samples in
the SDSD it makes sense to exploit the current source corre-
lation, though, in general the source correlation is not known
to the receiver, since we neither assume any transmission of
side information nor perfect knowledge at the receiver of the
amount of residual source redundancy as in previous publica-
tions, e.g., [6]. Another approach that deals with the estimation
of the source correlation at the receiver should also be men-
tioned here and may be found in [7]. The authors apply ISCD
to spatially separated correlated sources, which is a different
scenario than the one we deal with in this paper as we have
only a single source that emits a stream of correlated source
parameters. For this scenario we propose some (algorithmi-
cally simple, yet efficient) methods of different performance
and computational complexity wherewith it is feasible to esti-
mate the source correlation and exploit it in the SDSD.

Using a general Gauss-Markov source and an arbitrary time-
varying source correlation function as a model for the correla-
tion of the source parameters we obtain simulation results that
demonstrate the capabilities of the proposed methods. As chan-
nel coding scheme we apply a flexible low-density parity-check
(LDPC) [8, 9] coding scheme as introduced in [10] to ISCD.

II. ISCD TRANSMISSION SCHEME

The baseband model of the utilized ISCD transmission scheme
is depicted in Fig. 1. Source codec parameters u are gener-
ated, e.g., by a Gauss-Markov source, with an inherent auto-
correlation ρ in order to obtain comparable and reproducible
results. At time instant τ , K source codec parameters uk,τ

are assigned to one frame uτ with k=0, 1, . . .K − 1 denot-
ing the position in the frame. In this paper the autocorrelation
ρ is time-variant framewise, i.e., ρ=ρτ is constant during one
frame. The autocorrelation takes on values from a finite set,
e.g., ρ ∈ {0.0, 0.1, . . . 0.9}. The value-continuous and time-
discrete source samples uk,τ are each quantized to a quantizer
reproduction level ūk,τ . To each ūk,τ a unique bit pattern xk,τ

of M bits is assigned according to the utilized index assign-
ment. The single bits of a bit pattern xk,τ are indicated by

x
(m)
k,τ with m=0, 1, . . .M − 1, and the frame of bit patterns is

denoted as xτ .
Although there exist several index assignments [11, 3, 12]

designed for ISCD, we choose the natural binary (NB) index
assignment. Since the enhanced index assignments are de-
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û
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Figure 1: Baseband model of ISCD with LDPC codes.

signed for a certain amount of residual redundancy, they work
well only if the signal bears that specific amount of resid-
ual redundancy, else the performance decreases. One way is
to choose the index assignment corresponding to the current
amount of residual redundancy of the signal, which would re-
quire a transmission of side information on the utilized index
assignment. Another way is to use an unadapted index assign-
ment, which is independent of the amount of residual redun-
dancy such as the natural binary index assignment, which we
utilize in this paper,

The bit interleaver π scrambles the incoming frame xτ of
bit patterns to x̃τ in a deterministic manner. To simplify the
notation, we restrict the interleaving to a single time frame with
index τ and omit the time frame index τ in the following where
appropriate.

For the channel encoding of a frame x̃ of interleaved bits
x we utilize LDPC codes, which were first proposed by Gal-
lager [8] and rediscovered by MacKay [9]. LDPC codes have
a very high error correction capability with iterative decoding
that is very close to the Shannon limit. Their performance is
comparable or even superior to that of convolutional Turbo
codes. In this paper we use a modification of short LDPC
codes as presented in [10]. Identical instances of a short LDPC
code are combined to a long LDPC code, whose frame size is
flexible in multiples of a subframe size, i.e., the frame size of
the short LDPC code. By serially concatenating the subframes
with a bit-interleaver and a second component that provides
extrinsic information according to the Turbo principle (e.g., a
soft decision source decoder (SDSD) as in this paper), extrinsic
information can also be exchanged between subframes. Such
concatenated LDPC codes approach very well the performance
of long monolithic LDPC codes of the same frame size [10].
The performance of the concatenated LDPC code strongly de-
pends on the performance of the short code. Therefore, the
short code has to be chosen carefully. As short LDPC code
a (21,11) difference set cyclic (DSC) code [13] is used. DSC
codes feature a high minimum Hamming distance, and espe-
cially at short block lengths they can outperform comparable
pseudo-random LDPC codes [14].

The resulting codeword is denoted as y with bits y, which are
mapped to bipolar bits ÿ ∈ {±1} for BPSK transmission with

symbol energy ES =1. We choose the simple BPSK modula-
tion scheme, since modulation is no design issue in this paper.

On the channel, the signal ÿ is superposed with additive
white Gaussian noise (AWGN) n with the known power spec-
tral density σ2

n =N0/2, i.e., z= ÿ + n.
The received symbols z are evaluated in a Turbo process, in

which extrinsic reliabilities between the LDPC decoder and the
SDSD are exchanged. Utilizing LDPC codes results in an ad-
ditional iterative loop in the LDPC decoder, in which extrinsic
information is exchanged between the variable nodes and the
check nodes. These iterations are denoted as LDPC-iterations.

Details about the ISCD receiver can be found in [1, 2,
3]. The LDPC decoder uses the belief propagation algo-
rithm [15, 9] to generate extrinsic information. The SDSD
determines the extrinsic information mainly from the natu-
ral residual source redundancy, which generally remains in
the bit patterns xk after source encoding. Such residual re-
dundancy appears on parameter-level, e.g., as a non-uniform
distribution P (ūk), in terms of a correlation, or as any
other possible time-dependencies. The latter terms of resid-
ual redundancy are generally approximated by a first order
Markov chain, i.e., by exploiting the conditional probabilities
P (xk | xk−1). These conditional probabilities heavily depend
on the source correlation. For specific source correlations,
e.g., ρ ∈ {0.0, 0.1, . . . 0.9}, they can be calculated once in ad-
vance. The technique how to combine this a priori informa-
tion P (xk | xk−1) on parameter-level with the soft input val-
ues P [ext]

LDPC(x) on bit-level is also well known in the literature.
The algorithm how to compute the extrinsic P [ext]

SDSD(x) has been
detailed, e.g., in [1, 2, 3].

III. ESTIMATION OF TIME-VARIANT SOURCE

CORRELATION

In Fig. 2 the required Eb/N0 to achieve the arbitrary reference
parameter SNR P [ref] = 13dB is depicted for all combinations
of source correlation ρT and assumed correlation at the receiver
ρR with (ρT, ρR) ∈ {0.0, 0.1, . . . 0.9}. The simulation parame-
ters correspond to the ones detailed in Sec. IV.. The solid line
(matching line) on the surface connects the points ρR =ρT. Left
to this line, i.e., ρR <ρT, a shallow degradation can be observed
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Figure 2: Eb/N0 at P [ref] = 13dB of ISCD with source au-
tocorrelation ρT and assumed autocorrelation ρR at
the receiver.

by decreasing ρR until reaching a constant level for ρR≡0 ∀ρT,
which corresponds to the case of unexploited source correla-
tion. To the right of the matching line, i.e., ρR > ρT, severe
degradations occur by increasing ρR, especially for low ρT.
This shows that the system reacts highly sensitive to an over-
estimation of the correlation, i.e., ρR > ρT. Thus, the receiver
must obviously know the residual redundancy quite accurately,
either by transmitted side information or by estimation. In the
following, we present efficient methods for the latter task.

A. Source Correlation Model Functions

The source correlation ρT in this section is time-variant frame-
wise. In order to determine the correlation ρR at the receiver,
four estimation methods of different performance and compu-
tational complexity are proposed in the following. The perfor-
mance of the estimation methods is exemplarily presented by
means of two discrete sinusoidal source correlation functions,
visualized in Fig. 3, differing in frequency:

ρT1(τ)=0.4+
1
10

· �2.9 · (1+sin(ω1τ − π

2
))� , with ω1 =

8π

25
(1)

and

ρT2(τ)=0.4 +
1
10

· �2.5 · (1 + sin(ω2τ − π

2
))� , with ω2 =π .

(2)
These source correlation functions have been defined to

generate reproducible, time-varying source correlations. The
source correlations vary from frame to frame. The first function
has a moderate variation, i.e., the source correlation difference
from one frame to the following is rather small, whereas the
second function has the maximum variation possible. Thus, the
difference between the correlations of two adjacent frames is
maximal. We assume a minimum source correlation of ρT =0.4
and a maximum of ρT = 0.9 as a larger difference seems un-
likely.

B. Estimation Algorithms

Since the estimation of the autocorrelation is based on esti-
mated parameters, these have to be determined before each au-
tocorrelation estimation as depicted in Fig. 1. The autocorrela-
tion estimate ρ̂R(τ, K) is then determined from K successive
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Figure 3: Time-variant source correlation model functions.

estimated parameters û(τ) from the frame with time index τ as
follows

ρ̂R(τ, K) =

K−1∑

k=1

ûk−1(τ) · ûk(τ)

K−1∑

k=0

û2
k(τ)

. (3)

The estimation methods are now briefly described, starting
with the least complex one:

1st method: The autocorrelation ρ̂R(τ, Kmax) is determined
after the parameter estimation block from the parameter esti-
mates of the complete present frame, i.e., Kmax corresponds to
the frame size. Then, ρ̂R(τ, Kmax) is used as the true value to
choose the right a priori information in the SDSD for the decod-
ing of the following frame. This method is very simple to im-
plement and has an extremely low computational complexity,
since the autocorrelation estimation is performed only once per
frame and no additional parameter estimation is needed. How-
ever, this method is only justified for slowly varying source
correlations.

2nd method: The second method is a variation of the first
one. In the parameter estimation of each frame the autocorrela-
tion ρ̂R(τ, K) with Kmin ≤K ≤Kmax is updated after each pa-
rameter, as soon as Kmin parameters of the current frame have
been estimated. For the parameter estimation of these first Kmin

parameters the autocorrelation of the previous frame is utilized.
The updating of ρ̂R(τ, K) in one frame is stopped as soon as
K =Kmax. In the simulations Kmin =7 turned out to be a good
choice. The current value ρ̂R(τ, K) is utilized for estimating
the following parameter with the index K + 1. This estima-
tion method has a slightly increased complexity and a better
performance compared to method one. But since the autocor-
relation is estimated only in the last execution of the SDSD, the
previous iterations between LDPC decoder and the SDSD (LS-
iterations) are based on the autocorrelation from the previous
frame and might be incorrect. Since no iterative adaption of
the correlation estimation is performed in this method, it is still
only appropriate for moderately varying source correlations.

3rd method: Before the first invocation of the SDSD an ad-
ditional auxilliary parameter estimate ǔ is generated. This is
utilized for extracting a priori information by a successive au-
tocorrelation estimation. Then the SDSD can use the a pri-
ori information of the corresponding estimated correlation ρ̂R,
rather than the a priori information corresponding to the initial
value ρ=0.0 or to the correlations of the previous frame as in
methods one and two. In both, the auxilliary and the final para-
meter estimation, the autocorrelation is estimated according to
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the second estimation method. This method is more robust and
it has a good performance even with strongly varying source
correlations.

4th method: The fourth method performs an auxilliary para-
meter estimation with a successive autocorrelation estimation
before every SDSD execution, additionally to the final parame-
ter and autocorrelation estimation. This combination iteratively
updates the autocorrelation estimate, so that the SDSD always
can utilize the most recent ρ̂R. Again, the autocorrelation esti-
mation is performed according to method two. The computa-
tional complexity of this method is a multiple of the third one,
though the performance in the tested scenarios is very similar.

IV. SIMULATION RESULTS

In Figs. 4(a) and 4(b) the parameter SNR performance is de-
picted for the four autocorrelation estimation methods for the
source correlation functions ρT1(τ) and ρT2(τ) as well as the
so-called Genie curves, which result, when the transmitter cor-
relation is known to the receiver. Also depicted in both plots
are the curves for ρR ≡ 0.0, i.e., when no autocorrelation esti-
mation is performed, and additionally the curves for the non-
iterative case with hard decision and ρR ≡ 0.0. In the itera-
tive case six LS-iterations are carried out with three LDPC-
iterations per LS-iteration (i.e., (L3S)6 iterations). In the non-
iterative case only the three LDPC-iterations are carried out
(i.e., (L3S)1 iterations).

For ρT1(τ) the performance differences between the esti-
mation methods are quite small, but all show a better perfor-
mance than the non-estimating case with ρR ≡ 0.0 as visible in
Fig. 4(a). Consequently, one of the simpler methods should be
sufficient for this source correlation function.

The second source correlation function ρT2(τ) represents the
worst case for the first method. The correlation at the receiver
is estimated in one frame, but is exploited only in the follow-
ing one, and since the source correlation varies strongly from
one frame to the next the estimate utilized in the current frame
widely differs from the true value. Additionally to the direct
deteriorating effect which is based on utilizing a wrong correla-
tion value, a second effect degrades the performance of method
one. The received source samples with an originally rather low
source correlation ρT(τ) that are source decoded utilizing too
high correlations ρR show a higher correlation ρ after source
decoding than the original source correlation. By the result-
ing overestimation (ρ̂R > ρT) the performance degrades even
more, as already shown in Fig. 2. Note that before utilization,
the estimated correlations are quantized in order to choose the
corresponding a priori probabilities, which have been measured
in advance for a finite set of correlations. The source correla-
tions and the corresponding unquantized estimated and/or uti-
lized correlations at the receiver are depicted in Fig. 5 for differ-
ent estimation methods for the second source correlation model
function. In Fig. 5(a) the utilized unquantized correlation esti-
mate for method one is depicted, which is a right-shifted ver-
sion by one frame of the estimated correlation. The two ef-
fects that are responsible for the performance degradation are
clearly visible, i.e., first, the utilized correlation is high when

0 1 2 3 4 5
 5

10

13

15

Eb/N0

Pa
ra

m
et

er
SN

R
[d

B
] P [ref]

ρR ≡0

Genie

Hard decision,
non-iterative

(a) Parameter SNR for source correlation function ρT1(τ).
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Figure 4: Parameter SNR performance of different autocor-
relation estimation methods.
Frame size K = 330, 8-level LMQ, index assign. NB,
(L3S)6 iterations.◦ 1st method, � 2nd method,
� 3rd method, � 4th method.

the source correlation (and consequently the correlation at the
receiver, which is not depicted) is low and vice versa, and sec-
ondly, the estimate of the lower source correlation (ρT =0.4) is
much higher than 0.4. With the variations of method two these
effects can only be slightly attenuated, but the performance is
still worse than the non-estimating case as visible in Fig. 4(b).

Methods three and four, however, show about the same per-
formance as the Genie curve in good channels or even out-
perform the Genie curve in bad channels for both functions
ρT1(τ) and ρT2(τ). The reason for the good performance of
estimation method three and four is that the correlation at the
receiver is continuously estimated and is directly exploited in
the same frame. Due to the channel noise, the resulting higher
BER at the channel decoder output and the wrongly source de-
coded parameters the effective correlation at the receiver can be
lower than the source correlation as it can be seen in Fig. 5(b).
Nevertheless, this lower estimated correlation has to be cho-
sen at the receiver, since we decode the noisy signal. Note,
although method four has a higher computational complexity
than method three which is proportional to the number of LS-
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Figure 5: Comparison of the unquantized estimated and/or utilized correlation at the receiver ρ̂R(τ) ( � ) with the source
correlation ρT2(τ) ( • ) at Eb/N0 =0dB (cf. Fig. 4(b)).
a) ρ̂R(τ ) is the utilized unquantized correlation estimate, it is estimated in the previous frame,
b) continuous update of ρ̂R(τ ) and instant utilization in the same frame,
c) ρ̂R(τ ) is measured at the end of frame ûτ for comparison only, ρT(τ ) is utilized for the parameter estimation.

iterations, it has only an insignificantly better parameter SNR
performance. Consequently, for strongly varying source corre-
lations it is sufficient to choose estimation method three.

Utilizing the source correlation at the receiver, as in the Ge-
nie case, results in a performance degradation growing with the
channel noise. Then the performance degradation corresponds
to the case in which the correlation is overestimated at the re-
ceiver. This becomes obvious in Fig. 5(c) by measuring the
correlation ρ̂R at the receiver for the Genie case, which is lower
than the source correlation ρT that is utilized for the parameter
estimation.

V. CONCLUSION

In this paper we presented several estimation methods for the
time-varying residual redundancy of transmitted source sam-
ples in order to adaptively exploit the redundancy for improv-
ing the parameter estimation at the receiver in an ISCD scheme.
Their high performance has been demonstrated and verified by
means of two source correlation model functions. The more ad-
vanced methods, which still exhibit only a moderate increase in
complexity, even outperform the scenario with perfect know-
ledge of the source correlation at the receiver due to the in-
stantaneous adaption to the current effective correlation. Addi-
tionally, we integrated a sophisticated, flexible LDPC code as
channel code into the ISCD system.
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