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Abstract—Digital fountain codes over higher order Galois
fields exhibit a better performance than their binary counter-
parts under maximum likelyhood (ML) decoding when trans-
mitted over a symbol erasure channel (SEC). Especially random
linear fountain (RLF) codes exhibit an excellent performance,
though at the expense of a high computational complexity
for decoding due to their high density generator matrix. For
practical applications, we propose RLF codes with a reduced
density over higher order Galois fields. Although the reduction
of the density results in an error floor at higher reception
overheads, the level of this error floor can be well controlled
by two parameters. For error floor levels that are tolerable in
practical applications, a significant density reduction and thus
a reduction of the computational complexity can be achieved.
Furthermore, we derive a general upper bound on the symbol
erasure rate for Luby Transform (LT) codes over Galois fields
Fq of order q. Finally, we propose a method to enhance decoding
of Fq-codes in the presence of bit erasures by using the binary
images of theFq-elements, such that not completeFq-elements
have to be discarded if their binary counterparts are impaired
by bit erasures.

I. I NTRODUCTION

Fountain codes are a class of rateless erasure correcting
codes that have been introduced in [1] for usage in packet-
switched communication networks as an alternative solution
to retransmission schemes such as automatic repeat request
(ARQ) after packet losses. Rateless codes have been initially
designed for the binary erasure channel (BEC) not requiring
any knowledge of the erasure probabilityǫ. In multicast
scenarios, where different users experience different channel
conditions and independent losses that are unknown to the
transmitter, this feature is particularly useful. With rateless
codes, the transmitter can produce a potentially infinite
numbernT of encoded symbolsy = (y1, y2, . . . ynT

) from
a finite amount ofk input symbolsu = (u1, u2, . . . uk).

In the original proposal, binary codes have been consid-
ered, i.e. the input and output symbolsui andyj consist of
l bits each, wherei ∈ {1, 2, . . . k} and j ∈ {1, 2, . . . nT},
and thus,u ∈ F

[l×k]
2 and y ∈ F

[l×nT]
2 . Similar to low-

density parity-check (LDPC) codes, rateless codes can also
be defined over Galois fieldsFq of order q = 2m, where
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m > 1, see [2]–[4]. Accordingly, the symbolsui or yj
represent a collection ofl elements fromFq as depicted in
Fig. 1. However, since the symbolsui and yj can contain
any fixed numberl ∈ N of elements fromFq (including the
binary caseq = 2) and as this numberl has no influence
on the erasure correction performance of the codes [5], we
will assumel = 1 in the following, i.e.u ∈ F

[1×k]
q and

y ∈ F
[1×nT]
q with q ≥ 2. It should be noted though that

the Fq-elements have an equivalent binary representation
which requiresm bits per element. In order to deliver a
fair comparison between codes over Galois fields of different
orders, we fix the numberk = k2 of input bits and distribute
them to kq = ⌈ k2

ld q
⌉ = ⌈k2

m
⌉ input symbols, such that the

input size of a code overFq with q = 2m is kq.

Good rateless codes have the property that the receiver
is able to decode the originalkq input symbolsu from
any nR = kq(1 + εR) received code symbols with high
probability if εR ≥ 0, where εR is the relative reception
overhead. Practical rateless codes are sparse-graph codes, e.g.
LT codes [5], Raptor codes [6] or Online codes [7] for which
simple and efficient encoding and decoding algorithms exist.

In this paper we consider random linear fountain (RLF)
codes [6], [8], a type of LT codes with excellent error
correcting performance under maximum likelihood (ML)
decoding. Specifically, we analyse RLF codes with a low
density (LDRLF codes) [9] over higher order Galois fields.
We will show that the advantages of the binary codes from [9]
also apply if these codes are generalised to higher order
Galois fields.

The most popular decoding algorithm for LT codes is the
computationally cheap, though suboptimal, belief propaga-
tion (BP) algorithm that performs well on properly designed
codes, but only for large blocklengths. The optimal decoding
algorithm (optimal in the sense of minimal bit erasure proba-
bility at a certain reception overhead) is ML decoding, which,
in the case of the erasure channel, is equivalent to solving
a consistent system ofnR linear equations ink unknowns
by means of Gaussian elimination (GE). However, GE is
computationally expensive for large blocklengths. For dense
binary codes the decoding cost isO(nRk) per input bit, but
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input sizekq

l

l

input symbolui (source node) withl independent planes
of Fq-elements andm bits perFq-element

output symbolyj (check node) withl independent planes
of Fq-elements andm bits perFq-element

Fig. 1. General LT code graph withl independent planes ofFq-elements
andm bits perFq-element. Sincel has no influence on the erasure
correction performance of the codes [5], we assumel = 1 in this
paper.

it decreases for less dense codes. The density∆ of an LT
code overFq is the ratio of the number of non-zero entries
in the generator matrix to the total number of entries.

Considering delay sensitive applications, the usage of
short codes is inevitable. Moreover, in such a case the ML
decoding algorithm is the only decoding algorithm that shows
a good performance and its complexity is also affordable for
short codes.

Furthermore, we show that the excellent error correcting
performance of RLF codes under ML decoding increases
with the field orderq. However, this performance gain is not
as large as might be concluded from the results in [2] and [4].
In contrast to our setup, the numberk of inputsymbolsis kept
constant in [2] and [4], while the numberl of Fq-elements per
input symbol is adapted such that the number of equivalent
input bits per source block is constant. However, increasing
l is only an issue to save complexity and a means for a
better parallelisation. The erasure correction performance of
a code is independent ofl [5]. Therefore, we claim thatl
should be kept constant for a fair comparison of the erasure
correction performance and instead, the input sizekq of the
code should be adapted as a function of the Galois field order
q = 2m to ensure that the number of equivalent input bits per
source block is constant. This allows a higher input size for
codes over Galois fields of lower order by which their erasure
correction performance is increased. It should be noted that
by keepingl constant (l = 1 in this paper), it is required to
consider therelative reception overhead in order to compare
the erasure correction performance of codes over different
Galois fields.

II. LT C ODES OVERHIGHER ORDER GALOIS FIELDS

The generator matrixG ∈ F
[nT×kq ]
q of an LT code1,

with q = 2m, defines a graph connecting the set ofkq input

1For a more detailed description ofbinary LT codes, we refer the reader
to the original paper of Luby [5].

symbols u ∈ F
[1×kq ]
q to the set ofnT output symbols

y ∈ F
[1×nT]
q , wherenT can be arbitrarily large.

The input symbols are associated with input nodes,
whereas the output symbols are associated with output nodes
that are also called check nodes. In vector-matrix notation,
encoding is performed byyT = GuT. In contrast to
traditional block codes, the matrixG is generated online and
can differ for each data block. The decoder knows of each
output symbol to which input symbols it is connected, i.e. the
matrix G is known. This can be achieved by synchronising
identical pseudo-random processes that produceG.

The erasure correcting properties of LT codes are mainly
defined by the so-called check node degree distribution
Ω0, Ω1, . . .Ωk on {0, 1, . . . k}, where a check node has
degreed with probabilityΩd, i.e. it is connected tod distinct
input nodes, chosen uniformly at random from the set ofkq
input nodes. Typically, the degree distribution is described by
its generating polynomialΩ(x) =

∑kq

d=0 Ωd x
d.

In the generator matrixG the d non-zero entries in a row
correspond to the values of thed edges between a check
node andd input nodes. The value of a check node is
determined by adding up the product of each value of thed
input nodes with the value of the corresponding connecting
edge. The non-zero entries ofG are sampled uniformly
from the set ofq − 1 non-zeroFq-elements. The encoder
producesnT output symbols that are then transmitted over
a symbol erasure channel (SEC) that randomly erases some
of these transmitted Galois field symbols. At the receiver,
nR ≤ nT symbols are collected from which the decoder
tries to reproduce the originalkq input symbols.

Having collectednR ≤ nT output symbols, the decoder
uses thenR rows ofG that are associated with the received,
i.e, the collected, non-erased symbols to make up a new
matrixG′ on which decoding is performed. SinceG′ consists
of a set ofnR rows sampled at random from the original
matrix G according to the erasures that occur on the SEC,
G′ follows the same degree distribution asG. Due to the
weak erasure correction properties of BP decoding for a short
blocklength, we consider only ML decoding in this paper.

III. A NALYSIS OF LOW-DENSITY RANDOM L INEAR

FOUNTAIN CODES OVERFq

So-called random linear fountain (RLF) codes or random
LT codes have been introduced in [8] and [6] and have been
extended to higher order Galois fields in [2]. We refer to these
RLF codes as conventional RLF codes or sometimes simply
as RLF codes in contrast to our proposed low-density RLF
(LDRLF) codes. These codes have the degree distribution

Ω(x) = q−kq (1 + (q − 1)x)
kq , (1)

where q = 2 in [8] and [6]. This degree distribution
results from sampling each entry in the generator matrix
G uniformly at random from the set ofq Galois field
elements, i.e. each elementa ∈ Fq is chosen with probability
Pa = 1

q
. Thus, an edge between an input and an output

node is created as the outcome of a Bernoulli trial with
probability P¬0 = q−1

q
, whereP¬0 denotes the probability
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of occurrence of non-zeroFq-elements. However, this con-
struction leads to very dense LT matrices according to the
field orderq, as the probabilityP¬0 of non-zeroFq-elements
is equal to the expected value of the density∆ of the code.
The probability of generating a row of weightd is then2

Ωd =
(
kq

d

)
P d
¬0(1− P¬0)

(kq−d) = q−kq
(
kq

d

)
(q − 1)

d.
ML decoding on an SEC is equivalent to solving a system

of nR linear equations inkq unknowns. Thus, the probability
that the system is solvable equals the probability that the ma-
trix G′ at the receiver has rankkq. Hence, the frame erasure
probability PML

q,F after ML decoding equals the probability
thatG′ has not rankkq. It is given by (cf. e.g. [10])

PML
q,F = 1−

kq+ηR,S∏

i=1+ηR,S

(
1− q−i

)
, (2)

whereηR,S = kqεR is the absolute symbol reception over-
head. As shown in [2], tight upper and lower bounds3 on the
frame erasure probabilityPML

q,F exist for conventional RLF
codes that are independent of the input sizekq

PML
q,F = q−(ηR,S+1) ≤ PML

q,F <
1

q − 1
q−ηR,S = P

ML

q,F . (3)

Also of great interest is the symbol erasure ratePML
q,S . In the

following, we derive a general upper bound onPML
q,S for LT

codes with an arbitrary degree distributionΩ(x). And as a
special case we show thatPML

q,S of conventional RLF codes is

upper bounded byP
ML

q,S = q−(ηR,S+1). The derivation of this
general upper bound follows closely the arguments from [11].
In particular, Lemma 1 from [11] is generalised for codes
over higher order Galois fields.

Lemma 1. Given an LT code of lengthkq with generator
matrix G ∈ F

[nT×kq ]
q , following the check node degree

distribution Ω(x), where the non-zero elements inG are
chosen with equal probability, an upper bound on the symbol
erasure probabilityPML

q,S is

P
ML

q,S =

kq∑

w=1

(
kq − 1

w − 1

)

(q − 1)
w−1

·







1

q

∑

d

Ωd

d∑

s=0

(
w

s

)(
kq−w

d−s

) [

1− (1− q)
1−s

]

(
kq

d

)







kqγR

(4)

with the inverse reception rateγR = 1 + εR.

2In practical systems and also in our simulationsΩ0 equals zero. Thus,
a modification of the probabilitiesΩd for d > 0 is necessary, in order to
obtain

∑kq

d=1
Ωd = 1 and to keep the average check node degree constant.

However, for not too small input sizeskq or average check node degrees
Ω̄, the induced error of consideringΩ0 6= 0 in the theoretical analyis is
negligible. Therefore, we will not setΩ0 = 0 in the following derivations.

3For notational convenience, we will implicitly assume thatprobabilities
and their bounds are limited from above by one, i.e. the operation min{1, · }
is omitted.

Proof: The probabilityPML
q,S is equal to the probability

that theith Fq-symbol cannot be determined by ML decoding
for an arbitraryi ∈ {1, 2, . . . kq}

PML
q,S =Pr

{

∃u ∈ F
[1×kq ]
q , ui = a : G′uT = 0T

}

, (5)

with arbitrary but fixeda ∈ Fq \ {0}. The right-hand side
of (5) is the probability of theith column of matrixG′ being
linearly dependent on a non-empty set of columns. This can
be upper bounded by the probability of any possible set of
columns ofG′ being linearly dependent on columni

PML
q,S ≤ P

ML

q,S =
∑

u∈F
[1×kq ]
q ,

ui=a

Pr
{
G′uT = 0T

}
. (6)

The kqγR rows of G′ can be viewed as the outcomes of
independent trials of a random variabler ∈ F

[1×kq ]
q .

P
ML

q,S =
∑

u∈F
[1×kq ]
q ,

ui=a

[
Pr

{
ruT = 0

}]kqγR (7)

The weight of a vector overFq equals the number of
non-zero elements and is denoted| · |. Now, the probability
Pr

{
ruT = 0

}
is determined, conditioned on|r| = d and

|u| = w. A row r has weight|r| = d with probabilityΩd and
there are

(
kq−1
w−1

)
(q − 1)w−1 choices ofu of weightw with

ui = a. Let v = (v1, v2, . . . , vkq
) with vi = riui, wherevi,

ri and ui are theith elements of the vectorsv, r and u,
respectively, then

P
ML

q,S =

kq∑

w=1

(
kq − 1

w − 1

)

(q − 1)w−1

·

[
∑

d

Ωd Pr
{

ruT = 0
∣
∣
∣

∣
∣
∣| r | = d, |u | = w

}
]kqγR

(8)

with

Pr
{

ruT = 0
∣
∣
∣

∣
∣
∣| r | = d, |u | = w

}

=

d∑

s=0

Pr
{

|v | = s
∣
∣
∣ | r | = d, |u | = w

}

· Pr







kq∑

i=1

vi = 0
∣
∣
∣ |v | = s






. (9)

The probability of occurrence of exactlys non-zero elements
in v is

Pr
{

|v | = s
∣
∣
∣ | r | = d, |u | = w

}

=

(
w
s

)(
kq−w

d−s

)

(
kq

d

) . (10)

The last term in (9) is the numberN0(s, q) of possibilities
that s non-zeroFq-elements add up to zero, taking the
elements’ order into account, divided by the numberN(s, q)
of all possibilities to draws times with replacement from the
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set of theq − 1 non-zeroFq-elements also taking the order
into account:

Pr







kq∑

i=1

vi = 0
∣
∣
∣ |v | = s






=

N0(s, q)

N(s, q)
. (11)

The problem of determiningN0(s, q) is equivalent to finding
the number of closed walks of lengths in a complete graph
of size q of which a closed form expression can be found,
e.g. in [12]

N0(s, q) =
1

q
[(q − 1)

s
+ (q − 1) (−1)

s
] . (12)

With N(s, q) = (q − 1)
s we obtain

Pr







kq∑

i=1

vi = 0
∣
∣
∣ |v | = s






=

1

q

[

1− (1− q)
1−s

]

. (13)

Finally, inserting (10) and (13) into (9) and the resulting
expression into (8) concludes the assertion.

Using Lemma 1 and some arguments similar to those
in [9], it is shown in the following that for conventional
RLF codes overFq the upper bound (4) results inP

ML

q,S =

q−(ηR,S+1), which is a generalisation of Lemma 2 in [9] to
higher order Galois fields:

Lemma 2. Given a conventional random linear fountain
code overFq, i.e. an LT code overFq with the degree distri-
butionΩ(x) = q−kq

∑kq

d=1

(
kq

d

)
(q − 1)

d
xd, and the absolute

symbol reception overheadηR,S = nR−kq= (γR − 1)kq, an
upper bound on the symbol erasure probabilityPML

q,S after

ML decoding isP
ML

q,S = q−(ηR,S+1) for ηR,S ≥ 0.

Proof: Inserting the coefficients ofΩ(x) into (4) yields
(14) on the following page. In the term in (14) which is
denoted byΓq(kq), the upper limit of the inner summation
can be changed fromd to kq without affecting the result,
since4 the terms in whichs > d amount to zero. Now, the
two summations can be exchanged as the inner summation
variables is independent of the outer summation variabled.

Γq(kq)=

kq∑

s=0

(
w

s

)[

1− (1− q)1−s
] kq∑

d=0

(
kq − w

d− s

)

(q − 1)d

With
kq∑

d=0

(
kq − w

d− s

)

(q − 1)
d
=

kq−w
∑

d=0

(
kq − w

d

)

(q − 1)
d+s

= (q − 1)s qkq−w

the termΓq(kq) can be simplified to

Γq(kq) = qkq−w

kq∑

s=0

(
w

s

)

[(q − 1)
s
+ (−1)

s
(q − 1)]

= qkq .

4
(

ν

κ

)

> 0 if ν, κ ∈ N0 and 0 ≤ κ ≤ ν. In all other cases
(

ν

κ

)

= 0
applies.

Inserting this result forΓq(kq) into (14) we obtain

P
ML

q,S =

kq∑

w=1

(
kq − 1

w − 1

)

(q − 1)
w−1

q−kqγR

= q−kqγR

kq−1
∑

w=0

(
kq − 1

w

)

(q − 1)w

= q−kqγRqkq−1 = q−kq(γR−1)−1 = q−kqεR−1 (15)

= q−(ηR,S+1). (16)

A lower bound onPML
q,S corresponds to the probability that

an input node is not connected to any check node. Therefore,
the bound which is known for binary codes [6] is also valid
for other Galois fields:

PML
q,S =

(

1−
Ω̄

kq

)kqγR

, (17)

whereΩ̄ =
∑kq

d=1 dΩd is the average check node degree. For
RLF codes of arbitrary density this lower bound can also be
formulated in terms of the probabilityP¬0 of non-zeroFq-
elements or even simpler in terms of the probabilityP0 of
the zero element

PML
q,S = (1− P¬0)

kqγR = P
kqγR

0 .

In Fig. 2(a) the upper boundsP
ML

q,S (16) of conventional
RLF codes over different Galois fields are depicted as a
function of theabsolutesymbol reception overheadηR,S. In

this form, P
ML

q,S is independent of the input sizekq. Now,
one has to be careful not to draw the wrong conclusion that
by using higher order Galois fields, lower symbol erasure
probabilitiesPML

q,S could be reached much faster as is claimed
in [2] and [4]5. In Fig. 2(a) it is not taken into account that an
F2-element consists of 1 bit, whereas anF256-element con-
sists of 8 bits. Therefore, in Fig. 2(b) the upper bounds (15)
are depicted in terms of therelative reception overheadεR
for an RLF code of an exemplary equivalent input size of
k2 = 840bits6. It should be noted that in contrast to Fig. 2(a)
the upper bounds have a constant distance between each other
and thus, the gain in terms of the relative reception overhead
is constant between two codes over different fields as can be
seen from (15).

ML decoding overF2 has a complexity ofO(k32) per
information word. Using higher order Galois fields while
keeping the equivalent binary input size constant, the input
size in terms ofFq-elements decreases, so that less com-
putation steps are necessary. However, these steps are com-
putationally more complex, i.e.O((βmkq)

3) with βm > 1.

5The above reasoning is independent from the fact that [2] and[4]
consideredframeerasure probabilities.

6The equivalent binary input size of 840 bits is merely chosensince it
is the least common multiple ofm ∈ {1, 2, . . . 8} and the codes in the
different fields haveexactly the sameequivalent binary input size. Using
arbitrary equivalent binary input sizes, the input sizes interms of Fq-
elements are thenkq = ⌈ k2

ld q
⌉ = ⌈k2

m
⌉.
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P
ML

q,S =

kq∑

w=1

(
kq − 1

w − 1

)

(q − 1)
w−1

·



q−(kq+1)

kq∑

d=0

(q − 1)
d

d∑

s=0

(
w

s

)(
kq − w

d− s

)[

1− (1− q)
1−s

]

︸ ︷︷ ︸

Γq(kq)





kqγR

(14)
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(a) Upper bounds (16) onPML

q,S
as a function ofηR,S.
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(b) Upper bounds (15) onPML

q,S
as a function ofγR or εR, respectively, for

input sizes ofkq = 840

ld q
= 840

m
∈ {840, 420, . . . 105}.

Fig. 2. Upper boundsP
ML

q,S of conventional RLF codes overF2m with m ∈ {1, 2, . . . 8}.

In [13] an optimised approach for multiplications overFq is
proposed. Since computer architectures are generally based
on bytewise operations, we exemplarily consider a code over
F256, i.e. m = 8. Using, e.g. the ’Log/Antilog Optimized’
technique for the multiplications overF256 and assuming
three table lookups and one add operation per multiplication
(cf. [13, Table 1]), we coarsely estimate thatβ8 = 4.
With this assumption, the complexity for the code overF256

is O((4k256)
3) = O(18k

3
2). Consequently, with optimised

Galois field arithmetic implementations and eventually also
smart ML decoding algorithms, the computational complex-
ity per information word can be decreased with increasing
field orderq.

In Fig. 3 relative simulation times of the conventional RLF
codes from Fig. 2(b) are depicted at an inverse reception
overheadγR ≈ 1.01. The simulation times are given relative
to that of the binary code. The dashed line (tr = m−3) indi-
cates the order of complexity, since the Gaussian elimination
algorithm has a complexity ofO(k3q ) per information word.
At least for our simulation, the complexity factorβ is smaller
than 4, i.e. our simulation time speedups are even better than
estimated in the previous paragraph. However, the factorβ
strongly depends on the actual implementation.

In [9] binary RLF codes with reduced density have been
analysed. These codes have been shown to have a good
performance and can be used instead of their high density
counterparts. This behaviour can also be seen with RLF
codes over higher order Galois fields. The performance of
two example code sets overF2 to F64 with Ω̄ = 10 (code
set A) andΩ̄ = 15 (code set B) of equivalent binary input
size k2 = 300 is shown in Fig. 4 on the last page of this
paper. In the large figure, the upper and lower bounds on the
symbol erasure probabilities are depicted, while in the small
subplot also the simulated symbol erasure rates (SXR) and
the corresponding frame erasure rates (FXR) are shown for
the codes withΩ̄ = 10 over the fieldsF2, F8 andF64. For
small input sizes the discrete nature of the codes becomes
visible and only discrete points on the graphs (indicated by
the round markers) are actually attainable. We will make
statements on the performance mostly based on the upper
boundsP

ML

q,S , since these are very close to the simulated
symbol erasure rates, as can be seen in the subplot of Fig. 4.

We denote RLF codes over different Galois fields with the
same average check node degreeΩ̄ and the same equivalent
binary input sizek2 as a code set. The erasure correcting per-
formance of codes from the same set is similar. So the sizek2
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Fig. 3. Relative simulation times of the conventional RLF codes from
Fig. 2(b) with input sizes ofkq = 840
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{840, 420, . . . 105} andm ∈ {1, 2, . . . 8} at an inverse reception
rateγR ≈ 1.01. The simulation times are given relative to that of
the binary code. The dashed line (tr = m−3) indicates the order of
complexity (the Gaussian elimination algorithm has a complexity
of O(k3q) per information word).
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Fig. 5. Relative simulation times of (low-density) RLF codes with in-
put sizes ofkq = 300

ld q
= 300

m
∈ {300, 150, . . . 50} and

m ∈ {1, 2, 3, 4, 6} (as in Fig. 4) at an inverse reception rate
γR = 1.04 as a function of the code density. The simulation
times are given relative to that of the conventional binary RLF
code, i.e. with density∆ = 0.5. The diamond markers indicate
the conventional RLF codes. These have the maximum considered
density of∆ = 1− 1/q for a Galois field of orderq.

and the average degreēΩ are crucial parameters for defining
the erasure correcting properties. The performance slightly
increases with the Galois field orderq. For a higher field
orderq the upper bound is shifted towards lower values ofγR
and also reaches lower values in the error floor region when
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set A

set B

Fig. 6. Relative simulation times of the low-density RLF code sets A
(Ω̄ = 10) and B (̄Ω = 15) from Fig. 4 with input sizes of
kq = 300

ld q
= 300

m
∈ {300, 150, . . . 50} andm ∈ {1, 2, 3, 4, 6}

at an inverse reception rateγR = 1.04. The simulation times are
given relative to that of the binary code with density∆ = 0.5.

approaching the corresponding lower bound. Compared to the
conventional RLF codes, LDRLF codes apparently exhibit
an error floor. However, this error floor can be well adjusted
by the parametersk2 and Ω̄. In addition, most applications
do not need arbitrarily small erasure probabilities. Therefore,
allowing an error floor leads to a reduced average degree and
density, and thus to a reduced computational complexity. In
the example code set A, the LDRLF code overF64 has a
density∆ = 0.2 and an average degreēΩ = 10 instead of
∆ = 63

64 ≈ 0.984 andΩ̄ = 49.22 for a conventional RLF code
of the same size and over the same field. Such a decrease of
the density entails a remarkable complexity reduction which
makes LDRLF codes over higher order Galois fields better
suited for practical applications.

In Fig. 5 the relative simulation times are plotted for (low-
density) RLF codes overF2, F4, F8, F16 and F64 with
input sizeskq = 300

ld q
= 300

m
∈ {300, 150, . . .50}, where

m ∈ {1, 2, 3, 4, 6} at an inverse reception rateγR = 1.04.
The simulation times are given relative to that of the con-
ventional binary RLF code, i.e. with density∆ = 0.5. The
diamond markers indicate the conventional RLF codes. These
have the maximum considered density of∆ = 1 − 1/q
for a Galois field of orderq. By keeping the equivalent
binary input size constant (herek2 = 300bits), the relative
simulation time can be significantly decreased by choosing
a Galois field of higher order. Decreasing the density of
the codes gives an additional speedup. However, one has
to keep the erasure correction properties of the codes of
different densities in mind. Therefore, in Fig. 6 we also
show the relative simulation times of code sets A and B
from Fig. 4 at an inverse reception rateγR = 1.04, since
the erasure correction performance within a set is very
similar. And although codes over higher order Galois fields
exhibit a slightly better erasure correction performance,their
simulation time is significantly lower.
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IV. A C OMMENT ON THE SYMBOL ERASURE CHANNEL

In this paper we have considered a symbol erasure channel
(SEC) in contrast to the binary erasure channel (BEC), since
we assume that completeFq-elements (also denoted asFq-
symbols) are erased. However, since in practice each element
or symbol is transmitted in binary form, it may happen
that even a single bit erasure leads to the erasure of a
completeFq-element. If bit erasures are distributed among
many Fq-elements, it can have a very negative impact on
the decodability of the received symbols. Therefore, in the
corresponding scenarios, it might be useful to perform the
decoding on the binary equivalent of theFq-code. Each non-
zeroFq-element is represented by a power of the so-called
companion matrix [14]. The companion matrix corresponds
to the primitive elementα of Fq and is defined as them×m
matrix

M=












0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . .

...
0 0 0 · · · 1

−a0 −a1 −a2 · · · −am−1












, (18)

wherea(x) = a0+a1x+. . .+am−1x
m−1+xm is a primitive

polynomial ofFq with the coefficientsai ∈ F2. The all-zero
matrix of the same size corresponds to the zero element.

The binary equivalent of the generator matrixG is ob-
tained by exchanging eachFq-symbol αλ, where λ ∈
{1, 2, . . . , q − 1}, by the corresponding power of the com-
panion matrix, i.e.Mλ. Analogously, the input and output
symbols are converted to their binary images. If now bit
erasures occur, the decoding can be performed as usual in
the binary domain. However, the characteristics of the code
are now different, i.e. the density decreases but the average
degree increases (slightly, depending onm). The binary
density of the non-zeroFq-symbols can be determined as
δ = 2m−1

2m−1 , i.e. the code with density∆q overFq has now a
density∆2 = δ∆q, while the average degree changes from
Ω̄q to Ω̄2 = mδ Ω̄q. Using the binary image of a code over
higher order Galois fields makes it possible to use partially
receivedFq-symbols that contain bit erasures for decoding.

V. CONCLUSION

We have derived a formula for an upper bound on the
symbol erasure probability under ML decoding for LT codes
over higher order Galois fieldsFq and have found a simple
expression for the special case of random linear fountain
(RLF) codes overFq which have a density∆ = q−1

q
. Since

this density is too high for practical implementations, low-
density RLF (LDRLF) codes have been taken into consid-
eration. Decreasing the density introduces an error floor,
but most practical applications do not need arbitrarily small
erasure probabilities. Thus, it is justifiable to decrease the
density and thereby also the computational complexity of
encoding and especially decoding. Furthermore, the level of
the error floor can be controlled by means of the equivalent

binary input sizek2 and the average check node degree
Ω̄ of the LDRLF code. Referring to other publications,
we have shown by a fair comparison that RLF codes over
higher order Galois fields actually exhibit a performance gain
compared to codes over lower order fields. A brief analysis
of computational complexity reveals that theFq-codes can
compete with or even outperform their binary counterparts
if optimised Galois field arithmetic is used. Finally, binary
images of LT codes over higher order Galois fields are
introduced which provide a better decodability of received
Fq-symbols in the presence of bit erasures.
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Fig. 4. Upper and lower bounds on the symbol erasure probabilities PML

q,S after ML decoding of low-density random linear fountain codes of input sizes
kq = 300

ld q
= 300

m
∈ {300, 150, 100, 75, 60, 50} over Galois fieldsF2, F4, F8, F16, F32 andF64 with average check node degreesΩ̄ = 10

and Ω̄ = 15.
Upper right corner: Bounds for LDRLF codes overF2, F8 andF64 with k2 = 300, k8 = 100 andk64 = 50, respectively, for̄Ω = 10 together
with corresponding simulated symbol erasure rates (SXR) and frame erasure rates (FXR). The discrete nature of the checknodes becomes visible
in the piecewise linear characteristic of the upper bounds and the simulated results, which in the large plot is indicated by the round markers.
Additionaly, due to the small deviation of the simulated SXRs from their respective upper bounds, it is justified to describe the codes’ performance
by means of their upper boundsP

ML
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