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_Abstract—In this paper, two particular instances of LT codes for short message blocklength, i.¢.x 100, that show strong
with short message blocklengthk and maximum likelihood (ML) error correction properties under maximum likelihood (ML)
decoding over the binary erasure channel (BEC) are investigated decoding and that are easy to design. The standard decoding

i.e., random linear fountain (RLF) codes and (nearly) check- . . .
concentrated LT codes. Both show an almost equally good algorithm of LT codes is the computationally cheap, yet sub-

performance. The focus of this paper will be on RLF codes, a optimal, belief propagation (BP) algorithm that performeliw
type of LT codes whose generator matrices are constructed fro  on properly designed codes, but only for a large blocklength

independent Bernoulli trials and have a binomial check node The optimal decoding algorithm (optimal in the sense of
degree distribution. A new simple expression for an upper bound minimal bit erasure probability at a certain reception bead)

?Or; tFTEFbgog;assuihp:joebnas?t'ytgurEe[).'\;Li_g.ecgﬁmgclhsegf r:wvoege is ML decoding, which in the case of the erasure channel,

degree distribution (x) = 2~%(1+x)*. Itis shown that RLF IS equivalent to solving a consistent system raf linear
codes with a minimum density far less than0.5 are equally well equations ink unknowns by means of Gaussian elimination
suited to achieve a certain bit erasure probability for a given (GE). However, GE is computationally expensive for large
reception overhead. Furthermo_re, a charactenst_l(_: term from a blocklengths. For dense codes the decoding cos?(isrk)
general upper bound on the bit erasure probability under ML . . . .
decoding is identified that can be used to optimise check node per input bit, but it Qecrease§ for less dense codes. Thqyiens
degree distributions. Its implications on the performance of LT A of an LT code is the ratio of the number of ones in the

codes are qualitatively analysed. generator matrix to the total number of entries.

I. INTRODUCTION Il. LT CODES

Fountain codes, also called rateless codes, are a class ofhe generator matrixG € ]F[Q"TX’“] of an LT code defines
erasure correcting codes that have been introduced in 1] o graph connecting the set &finput bits to the set ofur
usage in packet-switched communication networks as an @litput bits, wherent can be arbitrarily large. The input
ternative solution to retransmission schemes such as atitompits are associated to input nodes, whereas the output bits
repeat request (ARQ) after packet losses. Rateless codes ke associated to output nodes that are also called check
been initially designed for the binary erasure channel (BEGodes. In vector-matrix notation, encoding is performed by
not assuming any knowledge of the erasure probabkilihis T — Gu”, whereu ¢ F[21><k] andy € ]F[21X"T] are the input
feature is useful, e.g., in multicast scenarios, whereetfit and output vector. In contrast to traditional block codés, t
users experience different channel conditions and indégs®n matrix G is generated online and can differ for each data
losses that are unknown to the transmitter. Using ratelasigck. The decoder knows of each output bit to which input
codes, the transmitter is able to produce a potentially itefin pits it is connected, i.e., the matri& is known. This can be
numbernt of encoded symbols from a finite amountioinput  achieved by synchronising identical pseudo-random peeses
Symbols, Consisting ofn bits each. Since the size can be that produce the under|ying generator matrix.
any fixed number of bits and as this size has no influenceThe erasure correcting properties of LT codes are mainly
on the performance of the codes, we will assume= 1 (efined by the so-called check node degree distribution
and refer to the input or code symbols as input or code bits, 0, ... 0, on {0, 1,...k}, where a check node has degree
respectively. Good rateless codes have the property teat thwith probability €, i.e., it is connected tod distinct
receiver is able to decode the originalinput bits from any jnput nodes, chosen uniformly at random from the set:of
nr = k(1+¢g) received code bits with high probability if thejnput nodes. Typically, the degree distribution is givenitsy
relative reception overheagk > 0. Practical rateless codesgenerating polynomiaf(z) = ZZZO Qqz?. In the generator
are sparse-graph codes, e.g., LT codes [2], Raptor codesj@trix G the d ones in a row correspond to the connections
or Online codes [4] for which simple and efficient encodingf 5 check node to thé input bits. The encoder produces
and decoding algorithms exist. output bits that are then transmitted over a BEC that rangom|

If an application is delay-sensitive, the usage of shoresoderases some of these bits. At the receives, < nr bits
is mandatory. In this paper, we propose two types of LT codgge collected from which the decoder tries to reproduce the

original k£ input bits.

*H'enning Sphep_ker is now with the Department of Communicatiorg-E Having collectedng < nt output bits, the decoder uses
neering at University of Bremen, Bremen, Germany . . .

This work has been supported by the UMIC Research Centre, mee nr rows of G that are associated to the received, i.e, the
Aachen University. collected, non-erased bits to make up a new ma@ixon
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which decoding is performed. Sind@’ consists of a set of Proof: The probability P! is equal to the probability
ngR rows that is sampled at random from the original maix that theith bit cannot be determined by ML decoding for an
according to the erasures that occur on the BECfollows arbitraryi € {1, 2,...k}

the same degrge distribution @6 In this paper, we conside.r PML _ p, {Hx c IF[;X’“], r=1: Gx' = OT} 3)
only ML decoding, due to the weak error correction propsrtie

of BP decoding for a short blocklength. For a more detailed < Z Pr {G’XT = OT}. 4)
description of LT codes, we refer the reader to the original e

paper of Luby [2]. zi=1

I1l. ANALYSIS OF RANDOM LINEAR FOUNTAIN Copes  The right-hand side of (3) is the probability of thi column

P
So-called random linear fountain (RLF) codes or random Lqi Imatrlx Ghbelng ,I['r?ea.”);]tdﬁ pegdggt O? a:ln'o nt'ﬁ mpty se;llpf
codes as introduced in [5] and in [3] have the degree distribg?'Umns, whereas the right-nan ,SI €o .( ) is the proligbil
tion Q(z) = 2-*(1+2)*. This degree distribution results from©' @1 POssible set of columns G¥' being linearly dependent
setting each entry in the generator mat@xo 0 or 1 according on colun}qz.dThe kgR rovv'slofC];} can :e wewga(ljb as t[TXek]OUt'
to the outcome of a Bernoulli trial, where the probability ofomes ofin epenT ent trials of a random va: el .
choosing a 1 is”; = 0.5. Hence, the probability of generating Pr {G’x = OT} = [Pr{rx" =0}]"" (5)
a row of weightd is Q; = (¥)Pd(1 — P)*k=D = (k)2-k, . . .
For arbitrarygvalues oLi‘Pl, E)d)<1§31 - 11), RLE 00(325 are The weight of a binary vector is denoted|. A row has

i _ i ili i T
characterised by a binomial check node degree distributiglr?'ght jr| = d W't.h probability 2. The inner producix
O(z) = Zk (k)Pd(l p )(k*d)xd Therefore. we will amounts to zero, iff an even number of thaddends-;z; are

- — - 1 . ] . .
synonymoug@ouﬁlisé the term binomiét, P,) LT codes and equal to one, wherg ar_ldxi are theith elements of the binary
mark the resulting degree distributions with indideand P;, ;/r:actorSr andx, respectively. Lev = (r1z1, 7222, - -, 7%%k),
i.e., Q% Pil(z). The density of RLF codes i& = P;. If T¢" -
settingQo = 0, a normalisation of the other probabilities for ~ Fr {I‘X =0
d > 0 is necessary, i.eQu = =g (3) P (1 — P9

in order to obtainZ’;:le = 1. Even thoughQ2y = 0 in

|r|=d, |x|:w}

:Pr{|v| even

rl=d, |x|=w}

. . . . w\ (k—
practical systems (also in our simulations), we mostly bee t > . (15) (dfsu)
unmodified binomial distribution in our analysis for reasaf _ 550225 ©6)
simplicity and since the induced error is negligiblesibr P, (Z)

are not too small. In cases where the effect is not negligibl\(fveighting the term in (6) with degree distribution(z),

weA\aI:/IoLs(;ate ;‘. result fOBtEtrC]:e. modnfle(? dlstr|but||qn. inserting it into (5) and marginalising over e(lfu‘;ll) choices
s ecoding on a IS equivalent to solving a systeng . weightw with 2; = 1 concludes the assertion. O

of ng linear equations ik unknowns, the probability that the Based on Lemma 1, we show next that for binonfial 0.5)

system is solvable equals the probability that the ma@hat . AL o (1)
the receiver has rank. Hence, the frame erasure probabilityLT codes the upper bound in (2) reducesitp - = 2 :

PM- after ML decoding equals the probability th@f has not Lemma 2. Given a binomial (k, 0.5) LT code, i.e., with the

rank k. As shown in [5] and [3], an upper bound i is' degree distribution Q%03 (z) = 27k S (*)a4, and the
P?AL _ gk—nr _ 97 1) absol ute reception overhead n = ng—k = (yr—1)k, an upper

bound on the bit erasure probability P after ML decoding

for a binomial(k, 0.5) LT code, where) = ker is the absolute js Py~ = 2-(+1) for 5 > 0.

reception overheaa.L The corresponding bit erasure priityabi Proof: Th ici F1F:0.5] : di 5

PMis at mostPY" — 2-0+D) as will be shown in the roof: The coefficients of2!* 95 (x) are inserted into (2).

following. As a basis we require Lemma 1 from [6] of which _y,, < /k — 1 e k w\ [k —w\ ¥R

we will also restate the proof for a better understanding: Py :Z (w _ 1)[2 Z Z <3)<d — s)}

d=0

Lemma 1. [6] For general LT codes of length &, with check v 5=0.2,....2 §]
node degree distribution Q(x) and the inverse reception rate (k)
R = 1 + g, an upper bound on PM- is The upper limit of the inner summation In(k) is changed

D () (=) ke from 2 |4] to 2| %] without affecting the result, sinéethe

k B 4 d=s terms withs > 2[4| amount to 0. The inner summation
L k-1 §=0,2,...,2| ¢ | . : o L2 ; i
Py =Y ) > : . variables is now independent of the outer summation variable
w=1 \W T d (d) d and thus the order of the two summations can be exchanged:
k
2 w k—w
@ - ¥ ()50
IFor notational convenience, we will implicitly assume thabhmbilities 5=0,2,....2| & | =0
and their bounds are limited from above by 1, i.e., the opemaiiin{1, - }
is omitted. 2(,';) > 0if v, s € No and0 < x < ». In all other case¢”) = 0 applies.
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Fig. 1.

The term (1;) restrictss to 0 < s < w, such that

k k o k—w+s k’ . k—w k - w
()= X (o)X () -

d=0
Combining this term with the last expression fofk) yields

F(k}) _ 2k—w . <’LU) _ 2k—1112w—1 _ 2k—17
S

where we have used the identityy~ (¥) = 2<~'. With

o even
I'(k) = 2¥=! we now obtain
k

?ML _ i k—]. [27]6]?‘(]{)]}97'?:27’6””;2 k_].
b w—1 w—1
w=1 w=1
k—1
=2 kR Y F=1) gobamghet — g-(kor-1)41)
w=0 w
— 9—(n+1) (7)

[l
Due to the high densityX = P, = 0.5) of G/, this remark-
able exponentially decreasing decoding erasure prohahds

a rather high encoding and an even higher decoding cost.
encoding cost in general is proportional to the averagekch

node degred) = >°%_ dQ,, which amounts td/2 in the

case of binomialk, 0.5) LT codes, the cost of ML decoding
using Gaussian elimination i®(ngrk) per input bit. Thus,
these costs are only affordable for a short blocklengths Thi

a motivation to examine the performance of binontial P;)

Upper and lower bounds on the bit erasure probabif}+ after ML decoding of random linear fountain codes of blockjh & = 100.

different value3 of P,. The upper bounds are according to (2),
simplified to (7) for P, = 0.5. Since the upper bound is very
tight for RLF codes, as the simulation results at the end ef th
paper will show, it is well suited to compare RLF codes with
different parameters. A lower bound dfl'" is given by the
probability that an input node is not connected to any check

node. According to [3] this lower bound is
1— —

kyr

For RLF codes witf2[¥: F1](z) this lower bound can be easily
expressed in terms aP;
P — (1 P

Using the modified binomial distribution, i.€) = 0, the
average check node degreefis= —*2__ and thus

T—(1-P)F
Pyt = (1

Pl kyr
1—(1- Pl)k) '

All lower bounds and the upper bound fé% = 0.5 that are
depicted in Fig. 1 are straight lines in the semi-logarithimi
plot. Except for the casé’, = 0.5, the upper and lower
bound pairs converge for increasing. For~g > 1, all upper

nds forP; < 0.5 follow initially the steep descent of the
dwpper bound forP, = 0.5. An RLF code withP;* performs
In its steep region as well as the code with = 0.5. The
simple upper bound foP; = 0.5 can therefore be used to
approximate the behavior in the steep region. Close to the
intersection of the upper bound fér, = 0.5 with the lower
bound forP}" < 0.5, the upper bound foP;* diverges from the

per bound for; = 0.5 and converges to the corresponding

o ®)

LT codes withP; < 0.5, such that the generator matrix is no P X
! g ower bound forPy. For higherg, the upper bound foP;

SO dense or even sparse.

In Fig. 1 the upper and lower bounds é}'- are depicted

for RLF codes of an exemplary blocklength= 100 with

30nly P; < 0.5 is considered. Values oP; > 0.5 just increase the
complexity without improving the error correction propestie

3/5
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Pr{rx" =0||x| = w}
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ﬁ Bx‘ —Q—QA(I), A—587

-

o ‘ - = [100, 0.058562] _

! ot £ Q(z) = Q (z), O = 5.87

- —©- Qc(z) = QU010 (z), Oc =10

~ — doga€ {1, 3, 5, 15, 25, 35, 49} —k= Qp(z) = 0.52° + 0.52'%, Qp = 10

— deven€ {2, 4, 10, 20, 30, 40, 50} —= QE(x) Q100,051 () Qe = 50
ot ; ; ; ; ; ; ; - i ot ; ; . *
1 10 20 30 40 50 60 70 80 90 100 1 20 40 60 80 100
w w
Fig. 2. Pr{rxT = 0‘ r|=d, |x|= w} for k = 100 andd < g Fig. 4. Pr{rxT = 0‘ |x| = w} for k = 100 and various check node

degree distributions. Codes B, C, E are RLF codes Rith P1](z).

1. From the latter fact it becomes obvious, that a system of
linear equations consisting only of rows of even degree afinn
be solved. Ifd > k/2, the characteristics alternate between the
characteristic ofd* = k — d and the horizontally mirrored
version thereof as can be seen in Fig. 3. A good degree
distribution is one that weights these characteristic$ sbat

the sum is minimised especially fav close tok/2, since

1 50 100 1 50 100  these resulting values are exponentiatedky and are then
w w multiplied by (¥~!). The latter operation amplifies especially
Fig. 3. Pr {rxT _ 0‘ Ir|=d, |x|= w} for k = 100 andd > . the values forw close tok/2. A good resulting characteristic

is thus flat forw close tok/2 and attains a value very close
can be approximated by the corresponding lower bound. Taeequal to0.5.
slope of PM- depends o or on P;, respectively. The two  Figure 4 depicts the resulting terfr{rx™ = 0| | x| = w}
linear (in log-domain) functions (7) and (8) can be used tiat is obtained by weighting (6) with different degree wlist-
design the steep as well as the shallow region of an RLF cotiens Q4 (z) to Qe(z). The distributionQa (z) = 0.007969x +
The parameter§€ or Py, respectively, define the beginning 0f0.4935722 + 0.166222% + 0.072646x% + 0.082558x° +
the shallow region and also its slope, i.e., a high valu of  0.0560582% + 0.0372292° + 0.055592'% + 0.025023x%° +
Py leads to a low bit erasure probabilif§" at a low relative 0.003135z% is taken from [3] and has been optimised for
reception overheaer = yr — 1. BP decodingQg(x) is the distribution of an RLF code with

In the following, we will point out some aspects of the uppemodified P; such that2g = Qa. The characteristic of code B

bound given in (2) that lead to good ML decoding properties @8 much flatter and closer t6.5 for w near k/2 which
a code for an arbitrary but fixed blocklength For successful leads to a better upper bound. The simulated bit erasure rate
decoding with arbitrary high reception overhead, the temm {BXR) are plotted in Figs. 5(a) and 5(b). The BXR of code B
square brackets from (2), i.r{rx™ = 0||x| = w} has to approaches its upper bound closely and both converge to the
be strictly Iess than 1, the smaller it is the less overheadoerrespondmg lower bound at relatively low overheads,|avhi
required foer to drop below a certain value, since this ternPb of code A is not that tight. Furthermore, the convergence
is raised to the power dfyg = k(1+¢cRr). The aforementioned to the lower bound as well as the BXR is worse than of code B.
term in (2) corresponds to the expression in (6) weightedCode C is an RLF code witflc = 10, while code D is
with some distributionQ2(z). In order to be able to asses:early check-concentrated, i.e., it has only degrees ¢#e
the contribution of (6) for all values ofv and d, this term average degree. Degrees of 10 are spared out, as a degree
is depicted in Figs. 2 and 3 as a function @f for some distribution with a high probability of even degrees leads
degreesd. For increasing values of, d < k/2 the graphs to a high probability of producing rank deficient matrices.
become flatter forv close tok/2. On the left(w = 1), all For simplicity, we have constructedp = 10 from the two
characteristics stay below 1, while on the right = k) the neighboring odd degrees 9 and 11. The characteristics séthe
characteristics of the even degrees attain an ordinateafl two codes in Fig. 4 are flat and undistinguishable for medium
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Fig. 5. Bit erasure rates (BXR) and frame erasure rates (FXRJ @odes of blocklengthk = 100 with different degree distributions.

values ofw and differ for small and large values of Despite encoding and decoding complexity still remains manageable
the latter differences, the BXR as well as the frame erasuke simple expression for a tight upper bound on the bit
rates (FXR) of the two codes are so similar that they aezasure probability has been derived for RLF codes with
undistinguishable in Fig. 5(c). A = P, = 0.5 and a term from the general upper bound

Code E is the binomialk, 0.5) LT code withQ1%%:931(2)  has been identified as a characteristic of the performance of
whose characteristic in Fig. 4 is totally flat and equaksvw. LT codes. This characteristic may prove useful to optimise
The simulation results in Fig. 5(d) illustrate the fast cemv degree distributions for LT codes under ML decoding.
gence of the simulation results to the respective bounds and
the remarkable performance.

The flatness of the characteristics in Fig. 4 shows to bella J- W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, "A dgifountain

d for the performance of the codes A to E. It ma: approach to reliable distribution of bulk dat&CM S GCOMM Computer

good measure o p e s Y Communication Review, vol. 28, pp. 56 — 67, 1998.
be useful to optimise degree distributions for ML decoding.[2] M. Luby, “LT Codes,” in Proc. 43rd Annual IEEE Symposium on

Foundations of Computer Science, 2002, pp. 271-280.
[3] A. Shokrollahi, “Raptor Codes,”IEEE Transactions on Information
. ) Theory, vol. 52, no. 6, pp. 2551-2567, 2006.

We have analysed random linear fountain (RLF) codes apgl P. Maymounkov, “Online Codes,” Secure Computer Systemsi@rew
(nearly) check-concentrated LT codes that perform unmdisti  York University, Tech. Rep. TR2002-833, Nov. 2002.

ishably well under ML decoding if the average check nodse] D. MacKay, “Fountain Codes,Communications, |EE Proceedings-, vol.
guishably g g 152, no. 6, pp. 1062—1068, 2005.
degree is equal. These two classes of codes show a VBIYN. Rahnavard and F. Fekri, “Bounds on Maximum-Likelihoodddding
good ML decodlng performance even at short blocklength of Fln|te-|_ength Rateless Codes,” froc. of the 39th Annual Conference

. . . on Information Science and ems (CISS 05), March 2005.
and for a minimum densityA far less than0.5, while the Systems ( )
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