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Abstract—In this paper, two particular instances of LT codes
with short message blocklengthk and maximum likelihood (ML)
decoding over the binary erasure channel (BEC) are investigated,
i.e., random linear fountain (RLF) codes and (nearly) check-
concentrated LT codes. Both show an almost equally good
performance. The focus of this paper will be on RLF codes, a
type of LT codes whose generator matrices are constructed from
independent Bernoulli trials and have a binomial check node
degree distribution. A new simple expression for an upper bound
on the bit erasure probability under ML decoding is derived
for RLF codes with density ∆ = 0.5, i.e., with check node
degree distribution Ω(x) = 2−k(1+x)k. It is shown that RLF
codes with a minimum density far less than0.5 are equally well
suited to achieve a certain bit erasure probability for a given
reception overhead. Furthermore, a characteristic term from a
general upper bound on the bit erasure probability under ML
decoding is identified that can be used to optimise check node
degree distributions. Its implications on the performance of LT
codes are qualitatively analysed.

I. I NTRODUCTION

Fountain codes, also called rateless codes, are a class of
erasure correcting codes that have been introduced in [1] for
usage in packet-switched communication networks as an al-
ternative solution to retransmission schemes such as automatic
repeat request (ARQ) after packet losses. Rateless codes have
been initially designed for the binary erasure channel (BEC)
not assuming any knowledge of the erasure probabilityǫ. This
feature is useful, e.g., in multicast scenarios, where different
users experience different channel conditions and independent
losses that are unknown to the transmitter. Using rateless
codes, the transmitter is able to produce a potentially infinite
numbernT of encoded symbols from a finite amount ofk input
symbols, consisting ofm bits each. Since the sizem can be
any fixed number of bits and as this size has no influence
on the performance of the codes, we will assumem = 1
and refer to the input or code symbols as input or code bits,
respectively. Good rateless codes have the property that the
receiver is able to decode the originalk input bits from any
nR = k(1+εR) received code bits with high probability if the
relative reception overheadεR ≥ 0. Practical rateless codes
are sparse-graph codes, e.g., LT codes [2], Raptor codes [3]
or Online codes [4] for which simple and efficient encoding
and decoding algorithms exist.

If an application is delay-sensitive, the usage of short codes
is mandatory. In this paper, we propose two types of LT codes
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for short message blocklength, i.e.,k ≈ 100, that show strong
error correction properties under maximum likelihood (ML)
decoding and that are easy to design. The standard decoding
algorithm of LT codes is the computationally cheap, yet sub-
optimal, belief propagation (BP) algorithm that performs well
on properly designed codes, but only for a large blocklength.
The optimal decoding algorithm (optimal in the sense of
minimal bit erasure probability at a certain reception overhead)
is ML decoding, which in the case of the erasure channel,
is equivalent to solving a consistent system ofnR linear
equations ink unknowns by means of Gaussian elimination
(GE). However, GE is computationally expensive for large
blocklengths. For dense codes the decoding cost isO(nRk)
per input bit, but it decreases for less dense codes. The density
∆ of an LT code is the ratio of the number of ones in the
generator matrix to the total number of entries.

II. LT C ODES

The generator matrixG ∈ F
[nT×k]
2 of an LT code defines

a graph connecting the set ofk input bits to the set ofnT

output bits, wherenT can be arbitrarily large. The input
bits are associated to input nodes, whereas the output bits
are associated to output nodes that are also called check
nodes. In vector-matrix notation, encoding is performed by
yT = GuT, whereu ∈ F

[1×k]
2 andy ∈ F

[1×nT]
2 are the input

and output vector. In contrast to traditional block codes, the
matrix G is generated online and can differ for each data
block. The decoder knows of each output bit to which input
bits it is connected, i.e., the matrixG is known. This can be
achieved by synchronising identical pseudo-random processes
that produce the underlying generator matrix.

The erasure correcting properties of LT codes are mainly
defined by the so-called check node degree distribution
Ω0, Ω1, . . .Ωk on{0, 1, . . . k}, where a check node has degree
d with probability Ωd, i.e., it is connected tod distinct
input nodes, chosen uniformly at random from the set ofk
input nodes. Typically, the degree distribution is given byits
generating polynomialΩ(x) =

∑k

d=0 Ωdx
d. In the generator

matrix G the d ones in a row correspond to the connections
of a check node to thed input bits. The encoder producesnT

output bits that are then transmitted over a BEC that randomly
erases some of these bits. At the receiver,nR ≤ nT bits
are collected from which the decoder tries to reproduce the
original k input bits.

Having collectednR ≤ nT output bits, the decoder uses
the nR rows ofG that are associated to the received, i.e, the
collected, non-erased bits to make up a new matrixG′ on
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which decoding is performed. SinceG′ consists of a set of
nR rows that is sampled at random from the original matrixG

according to the erasures that occur on the BEC,G′ follows
the same degree distribution asG. In this paper, we consider
only ML decoding, due to the weak error correction properties
of BP decoding for a short blocklength. For a more detailed
description of LT codes, we refer the reader to the original
paper of Luby [2].

III. A NALYSIS OF RANDOM L INEAR FOUNTAIN CODES

So-called random linear fountain (RLF) codes or random LT
codes as introduced in [5] and in [3] have the degree distribu-
tion Ω(x) = 2−k(1+x)k. This degree distribution results from
setting each entry in the generator matrixG to 0 or 1 according
to the outcome of a Bernoulli trial, where the probability of
choosing a 1 isP1 = 0.5. Hence, the probability of generating
a row of weightd is Ωd =

(
k
d

)
P d
1 (1 − P1)

(k−d) =
(
k
d

)
2−k.

For arbitrary values ofP1, 0 < P1 < 1, RLF codes are
characterised by a binomial check node degree distribution
Ω(x) =

∑k

d=0

(
k
d

)
P d
1 (1 − P1)

(k−d)xd. Therefore, we will
synonymously utilise the term binomial(k, P1) LT codes and
mark the resulting degree distributions with indicesk andP1,
i.e., Ω[k, P1](x). The density of RLF codes is∆ = P1. If
settingΩ0 = 0, a normalisation of the other probabilities for
d > 0 is necessary, i.e.,Ωd = 1

1−(1−P1)k

(
k
d

)
P d
1 (1− P1)

(k−d)

in order to obtain
∑k

d=1 Ωd = 1. Even thoughΩ0 = 0 in
practical systems (also in our simulations), we mostly use the
unmodified binomial distribution in our analysis for reasons of
simplicity and since the induced error is negligible ifk or P1

are not too small. In cases where the effect is not negligible,
we also state a result for the modified distribution.

As ML decoding on a BEC is equivalent to solving a system
of nR linear equations ink unknowns, the probability that the
system is solvable equals the probability that the matrixG′ at
the receiver has rankk. Hence, the frame erasure probability
PML

f after ML decoding equals the probability thatG′ has not
rank k. As shown in [5] and [3], an upper bound onPML

f is1

P
ML
f = 2k−nR = 2−η (1)

for a binomial(k, 0.5) LT code, whereη = kεR is the absolute
reception overhead. The corresponding bit erasure probability
PML

b is at mostP
ML
b = 2−(η+1) as will be shown in the

following. As a basis we require Lemma 1 from [6] of which
we will also restate the proof for a better understanding:

Lemma 1. [6] For general LT codes of length k, with check
node degree distribution Ω(x) and the inverse reception rate
γR = 1 + εR, an upper bound on PML

b is

P
ML
b =

k∑

w=1

(
k − 1

w − 1

)

·







∑

d

Ωd

∑

s=0,2,...,2⌊ d
2 ⌋

(
w
s

)(
k−w
d−s

)

(
k
d

)







kγR

.

(2)

1For notational convenience, we will implicitly assume that probabilities
and their bounds are limited from above by 1, i.e., the operation min{1, · }
is omitted.

Proof: The probabilityPML
b is equal to the probability

that theith bit cannot be determined by ML decoding for an
arbitrary i ∈ {1, 2, . . . k}

PML
b = Pr

{

∃x ∈ F
[1×k]
2 , xi = 1 : G′x

T
= 0T

}

(3)

≤
∑

x∈F
[1×k]
2 ,

xi=1

Pr
{

G′x
T
= 0T

}

. (4)

The right-hand side of (3) is the probability of theith column
of matrix G′ being linearly dependent on a non-empty set of
columns, whereas the right-hand side of (4) is the probability
of any possible set of columns ofG′ being linearly dependent
on columni. The kγR rows ofG′ can be viewed as the out-
comes of independent trials of a random variabler ∈ F

[1×k]
2 .

Pr
{

G′x
T
= 0T

}

=
[
Pr

{
rxT = 0

}]kγR (5)

The weight of a binary vector is denoted| · |. A row has
weight |r| = d with probability Ωd. The inner productrxT

amounts to zero, iff an even number of thek addendsrixi are
equal to one, whereri andxi are theith elements of the binary
vectorsr andx, respectively. Letv = (r1x1, r2x2, . . . , rkxk),
then

Pr
{

rxT = 0
∣
∣
∣

∣
∣
∣| r | = d, |x | = w

}

= Pr
{

|v | even
∣
∣
∣ | r | = d, |x | = w

}

=

∑

s=0,2,...,2⌊ d
2 ⌋

(
w
s

)(
k−w
d−s

)

(
k
d

) . (6)

Weighting the term in (6) with degree distributionΩ(x),
inserting it into (5) and marginalising over all

(
k−1
w−1

)
choices

of x of weightw with xi = 1 concludes the assertion.
Based on Lemma 1, we show next that for binomial(k, 0.5)

LT codes the upper bound in (2) reduces toP
ML
b = 2−(η+1):

Lemma 2. Given a binomial (k, 0.5) LT code, i.e., with the
degree distribution Ω[k, 0.5](x) = 2−k

∑k

d=0

(
k
d

)
xd, and the

absolute reception overhead η = nR−k = (γR−1)k, an upper
bound on the bit erasure probability PML

b after ML decoding

is P
ML
b = 2−(η+1) for η ≥ 0.

Proof: The coefficients ofΩ[k, 0.5](x) are inserted into (2).

P
ML
b =

k∑

w=1

(
k − 1

w − 1

)[

2−k

k∑

d=0

∑

s=0,2,...,2⌊ d
2 ⌋

(
w

s

)(
k − w

d− s

)

︸ ︷︷ ︸

Γ(k)

]kγR

The upper limit of the inner summation inΓ(k) is changed
from 2

⌊
d
2

⌋
to 2

⌊
k
2

⌋
without affecting the result, since2 the

terms with s > 2
⌊
d
2

⌋
amount to 0. The inner summation

variables is now independent of the outer summation variable
d and thus the order of the two summations can be exchanged:

Γ(k) =
∑

s=0,2,...,2⌊ k
2 ⌋

(
w

s

) k∑

d=0

(
k − w

d− s

)

.

2
(

ν

κ

)

> 0 if ν, κ ∈ N0 and0 ≤ κ ≤ ν. In all other cases
(

ν

κ

)

= 0 applies.
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Fig. 1. Upper and lower bounds on the bit erasure probabilityPML
b after ML decoding of random linear fountain codes of blocklength k = 100.

The term
(
w
s

)
restrictss to 0 ≤ s ≤ w, such that

k∑

d=0

(
k − w

d− s

)

=

k−w+s∑

d=s

(
k − w

d− s

)

=

k−w∑

d=0

(
k − w

d

)

= 2k−w.

Combining this term with the last expression forΓ(k) yields

Γ(k) = 2k−w ·
∑

s=0,2,...,2⌊ k
2 ⌋

(
w

s

)

= 2k−w2w−1 = 2k−1,

where we have used the identity
∑

σ even

(
ω
σ

)
= 2ω−1. With

Γ(k) = 2k−1 we now obtain

P
ML
b =

k∑

w=1

(
k − 1

w − 1

)
[
2−kΓ(k)

]kγR
= 2−kγR

k∑

w=1

(
k − 1

w − 1

)

= 2−kγR

k−1∑

w=0

(
k − 1

w

)

= 2−kγR2k−1 = 2−(k(γR−1)+1)

= 2−(η+1). (7)

Due to the high density (∆ = P1 = 0.5) of G′, this remark-
able exponentially decreasing decoding erasure probability has
a rather high encoding and an even higher decoding cost. The
encoding cost in general is proportional to the average check
node degreēΩ =

∑k

d=1 dΩd, which amounts tok/2 in the
case of binomial(k, 0.5) LT codes, the cost of ML decoding
using Gaussian elimination isO(nRk) per input bit. Thus,
these costs are only affordable for a short blocklength. This is
a motivation to examine the performance of binomial(k, P1)
LT codes withP1 < 0.5, such that the generator matrix is not
so dense or even sparse.

In Fig. 1 the upper and lower bounds onPML
b are depicted

for RLF codes of an exemplary blocklengthk = 100 with

different values3 of P1. The upper bounds are according to (2),
simplified to (7) forP1 = 0.5. Since the upper bound is very
tight for RLF codes, as the simulation results at the end of the
paper will show, it is well suited to compare RLF codes with
different parameters. A lower bound onPML

b is given by the
probability that an input node is not connected to any check
node. According to [3] this lower bound is

PML
b =

(

1−
Ω̄

k

)kγR

. (8)

For RLF codes withΩ[k, P1](x) this lower bound can be easily
expressed in terms ofP1

PML
b = (1− P1)

kγR .

Using the modified binomial distribution, i.e,Ω0 = 0, the
average check node degree isΩ̄ = kP1

1−(1−P1)k
and thus

PML
b =

(

1−
P1

1− (1− P1)k

)kγR

.

All lower bounds and the upper bound forP1 = 0.5 that are
depicted in Fig. 1 are straight lines in the semi-logarithmic
plot. Except for the caseP1 = 0.5, the upper and lower
bound pairs converge for increasingγR. For γR ≥ 1, all upper
bounds forP ∗

1 < 0.5 follow initially the steep descent of the
upper bound forP1 = 0.5. An RLF code withP ∗

1 performs
in its steep region as well as the code withP1 = 0.5. The
simple upper bound forP1 = 0.5 can therefore be used to
approximate the behavior in the steep region. Close to the
intersection of the upper bound forP1 = 0.5 with the lower
bound forP ∗

1 < 0.5, the upper bound forP ∗

1 diverges from the
upper bound forP1 = 0.5 and converges to the corresponding
lower bound forP ∗

1 . For higherγR, the upper bound forP ∗

1

3Only P1 ≤ 0.5 is considered. Values ofP1 > 0.5 just increase the
complexity without improving the error correction properties.
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can be approximated by the corresponding lower bound. The
slope ofPML

b depends on̄Ω or on P1, respectively. The two
linear (in log-domain) functions (7) and (8) can be used to
design the steep as well as the shallow region of an RLF code.
The parameters̄Ω or P1, respectively, define the beginning of
the shallow region and also its slope, i.e., a high value ofΩ̄ or
P1 leads to a low bit erasure probabilityPML

b at a low relative
reception overheadεR = γR − 1.

In the following, we will point out some aspects of the upper
bound given in (2) that lead to good ML decoding properties of
a code for an arbitrary but fixed blocklengthk. For successful
decoding with arbitrary high reception overhead, the term in
square brackets from (2), i.e.,Pr{rxT = 0 | |x | = w} has to
be strictly less than 1, the smaller it is the less overhead is
required forP

ML
b to drop below a certain value, since this term

is raised to the power ofkγR = k(1+εR). The aforementioned
term in (2) corresponds to the expression in (6) weighted
with some distributionΩ(x). In order to be able to assess
the contribution of (6) for all values ofw and d, this term
is depicted in Figs. 2 and 3 as a function ofw for some
degreesd. For increasing values ofd, d ≤ k/2 the graphs
become flatter forw close tok/2. On the left(w = 1), all
characteristics stay below 1, while on the right(w = k) the
characteristics of the even degrees attain an ordinate-value of
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=
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w
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w
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=
∑

d

Ωd Pr{rx
T = 0 | | r | = d, |x | = w}

=
∑

d

Ωd

∑

s=0,2,...,2⌊ d
2 ⌋

(ws)(
k−w

d−s)

(kd)

ΩA(x), Ω̄A = 5.87
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ΩC(x) = Ω[100, 0.10](x), Ω̄C = 10
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ΩE(x) = Ω[100, 0.5](x), Ω̄E = 50

Fig. 4. Pr
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rx
T = 0

∣

∣

∣
|x | = w

}

for k = 100 and various check node

degree distributions. Codes B, C, E are RLF codes withΩ[k, P1](x).

1. From the latter fact it becomes obvious, that a system of
linear equations consisting only of rows of even degree cannot
be solved. Ifd > k/2, the characteristics alternate between the
characteristic ofd∗ = k − d and the horizontally mirrored
version thereof as can be seen in Fig. 3. A good degree
distribution is one that weights these characteristics such that
the sum is minimised especially forw close tok/2, since
these resulting values are exponentiated bykγR and are then
multiplied by

(
k−1
w−1

)
. The latter operation amplifies especially

the values forw close tok/2. A good resulting characteristic
is thus flat forw close tok/2 and attains a value very close
or equal to0.5.

Figure 4 depicts the resulting termPr{rxT = 0 | |x | = w}
that is obtained by weighting (6) with different degree distribu-
tionsΩA(x) to ΩE(x). The distributionΩA(x) = 0.007969x+
0.49357x2 + 0.16622x3 + 0.072646x4 + 0.082558x5 +
0.056058x8 + 0.037229x9 + 0.05559x19 + 0.025023x65 +
0.003135x66 is taken from [3] and has been optimised for
BP decoding.ΩB(x) is the distribution of an RLF code with
modifiedP1 such thatΩ̄B = Ω̄A . The characteristic of code B
is much flatter and closer to0.5 for w near k/2 which
leads to a better upper bound. The simulated bit erasure rates
(BXR) are plotted in Figs. 5(a) and 5(b). The BXR of code B
approaches its upper bound closely and both converge to the
corresponding lower bound at relatively low overheads, while
P

ML
b of code A is not that tight. Furthermore, the convergence

to the lower bound as well as the BXR is worse than of code B.
Code C is an RLF code with̄ΩC = 10, while code D is

nearly check-concentrated, i.e., it has only degrees closeto its
average degree. Degrees of 10 are spared out, as a degree
distribution with a high probability of even degrees leads
to a high probability of producing rank deficient matrices.
For simplicity, we have constructed̄ΩD = 10 from the two
neighboring odd degrees 9 and 11. The characteristics of these
two codes in Fig. 4 are flat and undistinguishable for medium
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Fig. 5. Bit erasure rates (BXR) and frame erasure rates (FXR) of LT codes of blocklengthk = 100 with different degree distributions.

values ofw and differ for small and large values ofw. Despite
the latter differences, the BXR as well as the frame erasure
rates (FXR) of the two codes are so similar that they are
undistinguishable in Fig. 5(c).

Code E is the binomial(k, 0.5) LT code withΩ[100, 0.5](x)
whose characteristic in Fig. 4 is totally flat and equals0.5 ∀w.
The simulation results in Fig. 5(d) illustrate the fast conver-
gence of the simulation results to the respective bounds and
the remarkable performance.

The flatness of the characteristics in Fig. 4 shows to be a
good measure for the performance of the codes A to E. It may
be useful to optimise degree distributions for ML decoding.

IV. CONCLUSION

We have analysed random linear fountain (RLF) codes and
(nearly) check-concentrated LT codes that perform undistin-
guishably well under ML decoding if the average check node
degree is equal. These two classes of codes show a very
good ML decoding performance even at short blocklength
and for a minimum density∆ far less than0.5, while the

encoding and decoding complexity still remains manageable.
A simple expression for a tight upper bound on the bit
erasure probability has been derived for RLF codes with
∆ = P1 = 0.5 and a term from the general upper bound
has been identified as a characteristic of the performance of
LT codes. This characteristic may prove useful to optimise
degree distributions for LT codes under ML decoding.
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