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~ Abstract—Finite length LT codes over higher order Galois recently that rateless codes over higher order Galois fields
fields Fq for unequal error protection (UEP) are analysed exhibit a better erasure correction performance than thieir
under maximum likelihood (ML) decoding. We consider a biased nary counterparts [8], [9]. Additionally, we have demoasitd

sampling method to create the LT code graph. In contrast to a . 101 that this i d fi f
previous approach by Rahnavard et al., where a predetermined in [10] that this improved erasure correction performangene

number of edges is created per importance class given a checkCOmes with a lower computational complexity if the equivdle
node of degreed, our procedure allows to precisely adjust the binary input size is kept constant.
desired class weights. Moreover, we p_rovide upper and lower Using rateless codes, the transmitter can generate
Egt;r;(.js on the symbol erasure probability for each importance a potentially infinite numbernt of encoded symbols
v = (y1, Y2, - - - yny) from a finite amount of: input symbols
|. INTRODUCTION u = (u1, ug, ... u;). Though in practice the input and output
Fountain codes are a class of incremental redundargymbols «; and y; consist ofl F,-elements each, where
codes [1] that have been proposed in [2] as an alternative {1, 2,...k} and j € {1,2,...nr}, we consider only
approach to retransmission schemes to recover lost paickets = 1 in the following as this numbet has no influence on
packet-switched communication networks. Fountain codes #he erasure correction performance of the codes [3]. Nate th
rateless erasure correcting codes such as LT (Luby Trangfol,-elements have an equivalent binary representation which
codes [3], Raptor codes [4] and Online codes [5] for whictequiresm bits per element. In order to allow for a fair
simple and efficient encoding and decoding algorithms exisomparison of codes over Galois fields of different orders,
Originally developed for the binary erasure channel (BEC)e fix the numbet = &, of input bits and distribute them to
rateless codes do not require any information about the ekg-= (1’5—2(11 = [%] input symbols. Thus, the input size of a
sure probability. Especially in point-to-multipoint tremission code overlF, with ¢ = 2™ is k.
scenarios, where the individual and independent chanmel co In general, rateless codes are designed such that theeeceiv
ditions of the users are not known to the transmitter, this able to decode the origindl, input symbolsu from any
characteristic is particularly useful. nr = kq(1+¢er) received code symbols with high probability
Besides the original studies on rateless codes that tatgeifag > 0, wherezy is the required relative reception overhead.
equal error protection (EEP) of data, some proposals fer rat
less codes for unequal error protection (UEP) have followed [I. LT CODES OVERF,
EEP is needed, e.g. for the distribution of bulk data [2], levhi ) I )
UEP is better suited for, e.g. audio or video transmissioareh ~ The generator matrbG < I, =™ of an LT code, with
some parts of the data are more important than others dghar 2"+ defines a weighted graph that connects the set of
therefore need a stronger protection. Two examples ofesgel kq iNput nodesu € F;"™ to the set ofny output nodes
UEP schemes for LT codes are the approach by Rahnavard & Fg*"*, wheren can be arbitrarily large. A more detailed
al. [6] which we will refer to as weighted UEP and thelescription ofbinary LT codes can be found in [3].
expanding window (EW) method by Sejdinovic et al. [7]. The input symbols are assigned to input nodes and the
However, in this paper we will only deal with the weighte®utput symbols are assigned to output nodes that are also
UEP method, in which we uskiased sampling of the input called check nodes. In vector-matrix notation we encode by
symbols in order to allow focontinuous effective weights of ¥* = Gu'. In contrast to traditional block code&: is
the differently important data parts. Furthermore, we jutev generated online and may differ for each data blogk.is
upper and lower bounds on the symbol erasure probabildgsumed to be known at the decoder. This can be achieved by
under maximum likelihood (ML) decoding. synchronised pseudo-random processes that pro@uce
In the following, we consider LT codes over Galois fields The erasure correcting performance of an LT code is largely
F, of orderq = 2™, wherem > 1, since it has been showndefined by its check node degree distribution Qo, ...y,

o _ . on {1, 2,...k,}, where a check node has degréewith
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input nodes are chosen uniformly at random, i.e. with proba-As an example, two binary UEP LT codes of lendth=
bility p = k—lq from the set ofk, input nodes, while for UEP 100 andk; = 10000 are considered that consist of two classes
the input nodes are first assigneditamportance classes. Thewith relative sizesy; = 0.1 and as = 0.9 and are based on
input nodes of different classes have different probaediof the degree distribution
being chosen to be connected to a check node. The exact UEP 9 3 4
construction is explained in the next section. Q(x) =0.007969x + 0.493572° + 0.166222° 4 0.072646x

The d non-zero entries in a row of the generator mateix +0.082558z° + 0.056058z° 4 0.0372292°
correspond to the weights of thieedges between a check node +0.0555921° 4 0.0250232%° + 0.003135256 )
andd input nodes. The value of a check node is determined
by adding up the product of each value of #énput nodes Which is taken from [4]. The effective weight!™ of the
with the weight of the corresponding connecting edge. Thespective class 1 is plotted in Fig. 1 in blue as a function
non-zero entries of+ are sampled uniformly at random fromof the target weightv,. The dashed black line indicates the
the set ofg — 1 non-zeroF-elements. optimum cases®™ = w;. Due to the discontinuities not all

At the encodernr output symbols are generated, whiclgffective weights can be attained with the given parameters
are then transmitted over a symbol erasure channel (SE@YUt sizek,, class sizes;, . and degree distributiof(z).
that rand0m|y erases some of the transmitted Galois fie|dF0r the short code an additional deviation of the effective
symbols. Finally, the decoder tries to reproduce the osigip  Weight from the target weight becomes apparent in Fig. 1(a),
input symbols from thexz < nr received symbols. Having i.e. for higher target values the effective weight deviates
collectedny, output symbols, the decoder uses therows of towards lower values. This is due to thein(-) operation,
G that are associated with the collected, non-erased symbWRich clips the number of edges connected to this class to the
to form a new matrixG’ which is used for decoding. Sincenumber of available nodes. Clipping obviously only occuns f
G’ consists of a set ofiz rows sampled at random from thehigh degrees that are in the same order of magnitude as the
original matrix G according to the erasures that occur on th@izes of the involved classes. Accordingly, for the longecod

SEC, G’ has the same statistical propertiesGs this effect is not visible in the depicted range of targetghs
(see Fig. 1(b)).
I11. LT C oDES FORUNEQUAL ERRORPROTECTION In order to prevent the discontinuous relation between

ndw!®™ we propose to use biased sampling in order to select

using our notation. Thé, input nodes are first assigned o he input nodes from the different _clas_ses to be c_onnected to
importance classes, where importance clasms sizek, , = Fhe current c.heck pode of degra‘;eThls biased samphng.of the
arky With1 < 7 < T,0 < a, <1 and 23;1 a = 1 input nodes is equivalent to drawndg)glls one bTy one without

3 replacement from an urn that contaihg = >, , k,; balls

First, we briefly review the original approach [6, Sec. |

where o, is the relative size of class. According to the LT diff | h h ball of colonth o
importance of the classes, weighting factars are chosen 0 liferent colours, where each ball of colounas weight

such that the new initial probability of connecting an input™ The _probablllty _Of plckmg_ a ball 9f a pa_rtlcular_ c_olour
node from class to the current check node js, — “= — at a particular draw |s.proport|onal to !ts relative W(_alghthN

T T ke respect to the total weight of the remaining balls. Biasad-sa
wrp. ThUS, 57 pikei = 30— wi; = L. In their finite  oing has heen analysed by Wallenius [11] for the univariate
length analysis, the numbéf of input nodes from an arbitrary c,qe " — 2 and has been generalised to the multivariate case
class7 that are connected to a check node of degiel . chesson [12]. The partitioning of the overall degdeieto

set tomin([arw-d] , kg,r), where[z] means rounding 10 the qacq gegrees d,, whereS"”_ d, = d, therefore follows the
nearest integer. In general, it is desired to be able to €t ) ~,1led multivariate W: e

weights to arbitrary non-negative values that comply wité t istribution b ( dTCIllirllus no[ri(i(]anE;zaZI] h_l)fE?Srgd?;]::i]_e
side conditions imposed by the code parameters such that(tihe. HIWHCLYPS o wP T .
class specific protection reaches the required levels. Menve bution expresses the conditional probability mass functio
due to this rounding operation, only a discrete set of affect (pmi)

weightsw" s obtqined, although the target W.Eigms ae p (dl, . .dT—lld; kg, w) = mwnchypg (d’d; kg, w) 3)
chosen from a continuous set. The effective weights arengive

as a function ofu,: T P g d;
~(I(5)) JIL G-
=1 0 =1

a dz—:l Qgmin([a,w,d], kyr)
W[Teﬁ] a0 = PYy) ) (1) with the vectorsd = (dy, da,...dr) comprising the class

degreeskqy = (kq1, kg2, - - - kg r) cOMprising the class sizes
where Q = Z’;q:l dQ, is the average degree of the giverandw = (wy, we, ...wy) comprising the class specific target
degree distributio2(x). The numerator in (1) is the effectiveweights. This pmf can be evaluated by numerical integration
average degre€, of classt, while the denominator is the as described in [13] using the BiasedUrn R package [14].
average degree of classn the EEP case. The discontinuitiesVithout loss of generality, the degreé- is not explicitly
are highly dependent on the underlying degree distributionmentioned in the left-hand side of (3), since it is included
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— — — ideal caseJ* = rounded degreed, = min([a,w,d], kq.r) biased sampling
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(b) Input sizeks = 10000 bits.

Fig. 1. The effective weight®™ of class 1 as a function of the target weight for two UEP LT codes of input siz&> = 100 (a) andkz = 10000 (b)
with two classes of relative sizes; = 0.1 andaz = 0.9 and the degree distribution in (2). The round markers areatiper points used for Fig. 2.

implicitly according tozf:1 d, = d. In order to simplify the weight even equals the target weight. In case of the shoe cod
notation, we omit the parametrisation with the class skgs the deviation of the effective weight from the target weight

and weightsw and define the joint pmf as

due to the fact that the given degree distribution is not well

suited for the current code and class sizes. As an example
we consider a given degrek= 66 and weightw; = 2. The
target degree of class 1 is thépn = a;dw; = 13.2. However,
since class 1 contains only 10 symbols, the effective degfree

P(d) = P(dy,...dr) = P(dy,...dr_1,d)
:P(d)-P(dl,...dT_l d; K, w), )

where P (d) = Qq4, i.e. the coefficient$), of the check node

degree distributiorf2(z).

simplified notation: Given an arbitrary functiofi(d), the

class 1 will be considerably smaller and thus also the efiect

! . ) _weight. In order to compensate for this saturation effeds i
In the remainder of this paper we will use the following,ogsjple to (iteratively) find a weight vector that results i

the original target weights. For two classes this compémnsat

collated sum is quite simple. In order to obtain, e.g. an effective weight
dma Wl — 1.35, the actually assigned weight has to be 1.44 in
> f(d)  denotes > ...> f(d), case of the short example code as marked by the red circle in
d=dy 4. +dr=1 4 dr

Fig. 1(a).

where the sums are calculated for all combinations of the
values ofd = (dy, da,...dr) for which 1 < d < dy,.x and

S ' d. = d. Additionally, 0 < d, < min(d, k,,) with

1<r<T.

IV. BOUNDS ON THESYMBOL ERASURE PROBABILITY

FORUEP LT CoDESUSING BIASED SAMPLING

Using the biased sampling method, the effective weight is

dmax

_ P(d,)d,
6 TP@

P(d)d,
_d=di+..4dp=1

In the following, we will derive a lower and an upper bodnd

[efl] _  _ _
wr a0 a0 a0

where Q. is the average degree of classand P (d,) is

obtained by marginalisind (d).

Applied to our example codes of sizés = 100 and ky =

)

on the symbol erasure probabilif%l,\ﬁl"s} in importance class
7 for weighted UEP LT codes ovéf, under ML decoding,

where the codes are constructed using biased sampling.

10000, the resulting effective Weight;[fﬁ] of the respective

class 1 is plotted in Fig. 1 in red and is now a continuo

function of the target weight; . For the long code the effectiveis omitted.
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Analogously to the binary EEP case [4], a lower bound on
the symbol erasure raﬁ@ﬂhs} is given by the probability that

IFor notational convenience, we will implicitly assume thablmbilities
Ud their bounds are limited from above by one, i.e. the ojperanin{1, - }
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an input node in class is not connected to a check node: wherev;, r, andw; are thelth elements of the vectorg, r
o . kqTR arrw]d 1; respectiyely, thgn we obtain Eg. (10) on the next page.
pIMLS] _ (1 Pd) - ) . (5 The first term in (11) is

=—q,T kq -

d=di+...+dr=1

k
q 1 .

The following derivation of the upper bound on the symbol Pr{ > v; = 0’ [vi=sp= p (1 ~(1-q)' ) - (12)

erasure probabilit)P[f\fL’S] in classt for UEP LT codes over J=1

IF, with biased sampling is inspired by the one in [6] for binar

weighted UEP LT codes based on rounded class degrees.¥iccord|ng t0 [10, Eq. (13)] while the second term in (11) is

Lemma 1. Given the generator matrix G of a UEP LT code of Pr{ [v]=s ’ [r|=d, |u|= w}

length k,, with check node degree distribution (), 7" impor- T

tance classes of sizes kg = (kg,1, k.2, - kq.r) and weights =[] {|vj | =s, ‘ Ivj | =d;, |u;| = wj} (13)
w = (w1, wa,...wr) that is created using biased sampling, i

an upper bound on the symbol erasure probability Pq[l,\fL’S] is . N

given in Eq. (6) on the following page, where yg = 1 + g with the probability of occurrence of exactly; non-zero

is the inverse reception rate. The non-zero eements in G are  €léments in the subvector;

chosen with equal probability from F, \ {0}. (%) (kq,j—wj)
Sj djfsj
Proof: The probabilitqu“,\ﬁL’S] is equal to the probability T {| Vil =s; ‘ vyl =dj, ;] = wj} = (;cw)
d;

that theith F,-symbol cannot be determined by ML decoding

for. an arbitraryi € T, wherer is the set of input node indiceSReassembling all terms yields Eq. (6) on the following page
in importance class which concludes the assertion. O]
Pq[MTL,S] =Pr{3uc ]F;qu, w=a:Gul = OT} . @) The resulting bounds are exemplar_ily _iIIus_trated in Fi_gon

’ three short LT codes with degree distributi®tz) as given
with arbitrary but fixech € F,\ {0}. The right-hand side of (7) in (2), k, = 100 and two importance classes. The codes are
is the probability of theth column of the decoding matri&’  constructed either according to the method in [6] (green and
being linearly dependent on a non-empty set of columns. Thjkie) or by using biased sampling (red).
can be upper bounded by the probability of any possible set

of columns of G’ being linearly dependent on colunire V.. CONCLUSION

P(E\ﬁL’S] < ?%L’S] = Z Pr{G’uT = OT}. 8 In this paper we provide an analysis of finite length LT
ueFL*ka, codes over higher order Galois field% for unequal error
ti=a protection (UEP) under ML decoding when the UEP property
Due to the random and independent construction of cheiskestablished by assigning appropriate weights to therdifit
nodes, thek,yr rows of G’ can be viewed as the outcomesmportance classes. According to the weights, the edges of a
of independent trials of a random variabies IFéqu, where check node have different probabilities to be connectethao t
r = (ry, ra,...r7) With r; € Féx"'q«f and1 < j < T. Also input nodes of the different classes. In contrast to theslitee,

the vectoru can be expressed as= (uy, us,...uy) with the number of input nodes in an importance class that is

u, € FL*Fes: connected to a check node of degreés not fixed. Instead,
the connections are determined using biased sampling hwhic
pMLS! = Z (Pr{ru’ = 0})]“”1‘. (9) can be described by the multivariate Wallenius’ noncentral
uerL*ka, hypergeometric distribution. Our main contribution is the
ui=a derivation of importance class specific upper and lower deun

The weight of a vector oveff, equals the number of on the symbol erasure probability under ML decoding for the
non-zero elements and is denoted. Now, the probability biased sampling code construction method.
Pr {ruT = 0} is determined, conditioned ojr;| = d; and Our biased sampling approach enables continuous effective

luj| = wj, Vj. A row r has weightg|ri|, |r2f,...|rr|) =d UEP weights as a function of the target weights. For properly
with probability P(d) as given in (4), and there are chosen degree distributions, the effective UEP weights are
- even equal to the target weights, while this is not the casigein
(- 1)“’_1 (kqd- — 574) approach from the literature, in which a rounding operatton
9 wj — Oy used. Though this rounding operation significantly simgsifi
=1 ’ . .
especially the computation of the upper bound on the symbol
choices of u = (uj, ug,...ur) of weights erasure probability, it introduces discontinuities in &ffective
w = (wy,ws,...wp) with uv; = a and i € 7, weights as a function of the target weights, which leads to
where ¢6,; is the Kronecker delta function. Letdeviations of the protection levels of the respective intgrace
v = (v, Va,... vp) = (v1, va,... v,) With v; = ruy, classes from the targeted ones.
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kq
—[ML,S]
Py = Z

w=wi+...+wpr=1 =1
we>1

d=dy+...+dr=1 s=s14...s7=0

(-1 ﬁ (l:fj__

(- [T EE ©)

[ML,S] a k 5
—[ML, w—1 g Yty
R DECEE e 01
w=wi+...4wr=1 =1 J 75
>1
dmax Eqvr
3 P(d)Pr{ruT :0’ 1| =di,...|v7| =dp, |ui|=wi,...|ur| :wT} (10)
d=di1+...+dpr=1
with
Pr{ruT:O‘ |ry|=di,...|rr| =dp, |u1|:w1,...|uT|:wT}
d kq
= Z Pr Zvjzo‘\v|:s -Pr{|v|:s‘|r|:d,|u|:w}. (12)
s=s1+...s7=0 j=1
0
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