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Abstract—Finite length LT codes over higher order Galois
fields Fq for unequal error protection (UEP) are analysed
under maximum likelihood (ML) decoding. We consider a biased
sampling method to create the LT code graph. In contrast to a
previous approach by Rahnavard et al., where a predetermined
number of edges is created per importance class given a check
node of degreed, our procedure allows to precisely adjust the
desired class weights. Moreover, we provide upper and lower
bounds on the symbol erasure probability for each importance
class.

I. I NTRODUCTION

Fountain codes are a class of incremental redundancy
codes [1] that have been proposed in [2] as an alternative
approach to retransmission schemes to recover lost packetsin
packet-switched communication networks. Fountain codes are
rateless erasure correcting codes such as LT (Luby Transform)
codes [3], Raptor codes [4] and Online codes [5] for which
simple and efficient encoding and decoding algorithms exist.
Originally developed for the binary erasure channel (BEC),
rateless codes do not require any information about the era-
sure probability. Especially in point-to-multipoint transmission
scenarios, where the individual and independent channel con-
ditions of the users are not known to the transmitter, this
characteristic is particularly useful.

Besides the original studies on rateless codes that target at
equal error protection (EEP) of data, some proposals for rate-
less codes for unequal error protection (UEP) have followed.
EEP is needed, e.g. for the distribution of bulk data [2], while
UEP is better suited for, e.g. audio or video transmission where
some parts of the data are more important than others and
therefore need a stronger protection. Two examples of rateless
UEP schemes for LT codes are the approach by Rahnavard et
al. [6] which we will refer to as weighted UEP and the
expanding window (EW) method by Sejdinovic et al. [7].
However, in this paper we will only deal with the weighted
UEP method, in which we usebiased sampling of the input
symbols in order to allow forcontinuous effective weights of
the differently important data parts. Furthermore, we provide
upper and lower bounds on the symbol erasure probability
under maximum likelihood (ML) decoding.

In the following, we consider LT codes over Galois fields
Fq of order q = 2m, wherem ≥ 1, since it has been shown
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recently that rateless codes over higher order Galois fields
exhibit a better erasure correction performance than theirbi-
nary counterparts [8], [9]. Additionally, we have demonstrated
in [10] that this improved erasure correction performance even
comes with a lower computational complexity if the equivalent
binary input size is kept constant.

Using rateless codes, the transmitter can generate
a potentially infinite numbernT of encoded symbols
y = (y1, y2, . . . ynT

) from a finite amount ofk input symbols
u = (u1, u2, . . . uk). Though in practice the input and output
symbols ui and yj consist of l Fq-elements each, where
i ∈ {1, 2, . . . k} and j ∈ {1, 2, . . . nT}, we consider only
l = 1 in the following as this numberl has no influence on
the erasure correction performance of the codes [3]. Note that
Fq-elements have an equivalent binary representation which
requiresm bits per element. In order to allow for a fair
comparison of codes over Galois fields of different orders,
we fix the numberk = k2 of input bits and distribute them to
kq = ⌈ k2

ld q
⌉ = ⌈k2

m
⌉ input symbols. Thus, the input size of a

code overFq with q = 2m is kq.
In general, rateless codes are designed such that the receiver

is able to decode the originalkq input symbolsu from any
nR = kq(1+εR) received code symbols with high probability
if εR ≥ 0, whereεR is the required relative reception overhead.

II. LT C ODES OVERFq

The generator matrixG ∈ F
nT×kq
q of an LT code, with

q = 2m, defines a weighted graph that connects the set of
kq input nodesu ∈ F

1×kq
q to the set ofnT output nodes

y ∈ F
1×nT
q , wherenT can be arbitrarily large. A more detailed

description ofbinary LT codes can be found in [3].
The input symbols are assigned to input nodes and the

output symbols are assigned to output nodes that are also
called check nodes. In vector-matrix notation we encode by
yT = GuT. In contrast to traditional block codes,G is
generated online and may differ for each data block.G is
assumed to be known at the decoder. This can be achieved by
synchronised pseudo-random processes that produceG.

The erasure correcting performance of an LT code is largely
defined by its check node degree distributionΩ1, Ω2, . . .Ωkq

on {1, 2, . . . kq}, where a check node has degreed with
probability Ωd, i.e. it is connected tod distinct input nodes.
The degree distribution is often described by its generating
polynomial Ω(x) =

∑kq

d=1 Ωd x
d. For EEP thed connected
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input nodes are chosen uniformly at random, i.e. with proba-
bility p = 1

kq
, from the set ofkq input nodes, while for UEP

the input nodes are first assigned toT importance classes. The
input nodes of different classes have different probabilities of
being chosen to be connected to a check node. The exact UEP
construction is explained in the next section.

The d non-zero entries in a row of the generator matrixG

correspond to the weights of thed edges between a check node
and d input nodes. The value of a check node is determined
by adding up the product of each value of thed input nodes
with the weight of the corresponding connecting edge. The
non-zero entries ofG are sampled uniformly at random from
the set ofq − 1 non-zeroFq-elements.

At the encoder,nT output symbols are generated, which
are then transmitted over a symbol erasure channel (SEC)
that randomly erases some of the transmitted Galois field
symbols. Finally, the decoder tries to reproduce the original kq
input symbols from thenR ≤ nT received symbols. Having
collectednR output symbols, the decoder uses thenR rows of
G that are associated with the collected, non-erased symbols
to form a new matrixG′ which is used for decoding. Since
G′ consists of a set ofnR rows sampled at random from the
original matrixG according to the erasures that occur on the
SEC,G′ has the same statistical properties asG.

III. LT C ODES FORUNEQUAL ERRORPROTECTION

First, we briefly review the original approach [6, Sec. IV]
using our notation. Thekq input nodes are first assigned toT
importance classes, where importance classτ has sizekq,τ =

ατkq, with 1 ≤ τ ≤ T , 0 ≤ ατ ≤ 1 and
∑T

i=1 αi = 1,
where ατ is the relative size of classτ . According to the
importance of the classes, weighting factorsωτ are chosen
such that the new initial probability of connecting an input
node from classτ to the current check node ispτ = ωτ

kq
=

ωτp. Thus,
∑T

i=1 pikq,i =
∑T

i=1 ωiαi = 1. In their finite
length analysis, the numberdτ of input nodes from an arbitrary
class τ that are connected to a check node of degreed is
set tomin([ατωτd] , kq,τ ), where[x] means rounding to the
nearest integer. In general, it is desired to be able to set the
weights to arbitrary non-negative values that comply with the
side conditions imposed by the code parameters such that the
class specific protection reaches the required levels. However,
due to this rounding operation, only a discrete set of effective
weightsω[eff]

τ is obtained, although the target weightsωτ are
chosen from a continuous set. The effective weights are given
as a function ofωτ :

ω[eff]
τ =

Ω̄τ

ατ Ω̄
=

dmax
∑

d=1

Ωd min([ατωτd] , kq,τ )

ατ Ω̄
, (1)

where Ω̄ =
∑kq

d=1 dΩd is the average degree of the given
degree distributionΩ(x). The numerator in (1) is the effective
average degreēΩτ of classτ , while the denominator is the
average degree of classτ in the EEP case. The discontinuities
are highly dependent on the underlying degree distribution.

As an example, two binary UEP LT codes of lengthk2 =
100 andk2 = 10000 are considered that consist of two classes
with relative sizesα1 = 0.1 andα2 = 0.9 and are based on
the degree distribution

Ω(x) = 0.007969x+ 0.49357x2 + 0.16622x3 + 0.072646x4

+ 0.082558x5 + 0.056058x8 + 0.037229x9

+ 0.05559x19 + 0.025023x65 + 0.003135x66 (2)

which is taken from [4]. The effective weightω[eff]
1 of the

respective class 1 is plotted in Fig. 1 in blue as a function
of the target weightω1. The dashed black line indicates the
optimum caseω[eff]

1 = ω1. Due to the discontinuities not all
effective weights can be attained with the given parameters
input sizekq, class sizeskq,τ and degree distributionΩ(x).

For the short code an additional deviation of the effective
weight from the target weight becomes apparent in Fig. 1(a),
i.e. for higher target values the effective weight deviates
towards lower values. This is due to themin(·) operation,
which clips the number of edges connected to this class to the
number of available nodes. Clipping obviously only occurs for
high degrees that are in the same order of magnitude as the
sizes of the involved classes. Accordingly, for the long code
this effect is not visible in the depicted range of target weights
(see Fig. 1(b)).

In order to prevent the discontinuous relation betweenωτ

andω[eff]
τ , we propose to use biased sampling in order to select

the input nodes from the different classes to be connected to
the current check node of degreed. This biased sampling of the
input nodes is equivalent to drawingd balls one by one without
replacement from an urn that containskq =

∑T

i=1 kq,i balls
of T different colours, where each ball of colourτ has weight
ωτ . The probability of picking a ball of a particular colour
at a particular draw is proportional to its relative weight with
respect to the total weight of the remaining balls. Biased sam-
pling has been analysed by Wallenius [11] for the univariate
case (T = 2) and has been generalised to the multivariate case
by Chesson [12]. The partitioning of the overall degreed into
class degrees dτ , where

∑T

τ=1 dτ = d, therefore follows the
so-called multivariate Wallenius’ noncentral hypergeometric
distributionmwnchypg

(

d

∣

∣

∣
d; kq, ω

)

[11], [12]. This distri-
bution expresses the conditional probability mass function
(pmf)

P
(

d1, . . . dT−1

∣

∣

∣d; kq, ω
)

= mwnchypg
(

d

∣

∣

∣d; kq, ω
)

(3)

=

(

T
∏

i=1

(

kq,i

di

)

) 1
∫

0

T
∏

i=1

(

1− t
ωi

ω(kq−d)

)di

dt

with the vectorsd = (d1, d2, . . . dT ) comprising the class
degrees,kq = (kq,1, kq,2, . . . kq,T ) comprising the class sizes
andω = (ω1, ω2, . . . ωT ) comprising the class specific target
weights. This pmf can be evaluated by numerical integration
as described in [13] using the BiasedUrn R package [14].
Without loss of generality, the degreedT is not explicitly
mentioned in the left-hand side of (3), since it is included
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ideal caseω[eff]
1 = ω1 rounded degreesdτ = min([ατωτd] , kq,τ ) biased sampling
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(a) Input sizek2 = 100 bits.
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(b) Input sizek2 = 10000 bits.

Fig. 1. The effective weightω[eff]
1

of class 1 as a function of the target weightω1 for two UEP LT codes of input sizek2 = 100 (a) andk2 = 10000 (b)
with two classes of relative sizesα1 = 0.1 andα2 = 0.9 and the degree distribution in (2). The round markers are operating points used for Fig. 2.

implicitly according to
∑T

τ=1 dτ = d. In order to simplify the
notation, we omit the parametrisation with the class sizeskq

and weightsω and define the joint pmf as

P (d) = P (d1, . . . dT ) = P (d1, . . . dT−1, d)

= P (d) · P
(

d1, . . . dT−1

∣

∣

∣
d; kq, ω

)

, (4)

whereP (d) = Ωd, i.e. the coefficientsΩd of the check node
degree distributionΩ(x).

In the remainder of this paper we will use the following
simplified notation: Given an arbitrary functionf(d), the
collated sum

dmax
∑

d=d1+...+dT=1

f(d) denotes
∑

d1

. . .
∑

dT

f(d),

where the sums are calculated for all combinations of the
values ofd = (d1, d2, . . . dT ) for which 1 ≤ d ≤ dmax and
∑T

τ=1 dτ = d. Additionally, 0 ≤ dτ ≤ min(d, kq,τ ) with
1 ≤ τ ≤ T .

Using the biased sampling method, the effective weight is

ω[eff]
τ =

Ω̄τ

ατ Ω̄
=

∑

dτ

P (dτ ) dτ

ατ Ω̄
=

dmax
∑

d=d1+...+dT=1

P (d) dτ

ατ Ω̄
,

where Ω̄τ is the average degree of classτ and P (dτ ) is
obtained by marginalisingP (d).

Applied to our example codes of sizesk2 = 100 andk2 =
10000, the resulting effective weightω[eff]

1 of the respective
class 1 is plotted in Fig. 1 in red and is now a continuous
function of the target weightω1. For the long code the effective

weight even equals the target weight. In case of the short code
the deviation of the effective weight from the target weightis
due to the fact that the given degree distribution is not well
suited for the current code and class sizes. As an example
we consider a given degreed = 66 and weightω1 = 2. The
target degree of class 1 is thend1 = α1dω1 = 13.2. However,
since class 1 contains only 10 symbols, the effective degreeof
class 1 will be considerably smaller and thus also the effective
weight. In order to compensate for this saturation effect, it is
possible to (iteratively) find a weight vector that results in
the original target weights. For two classes this compensation
is quite simple. In order to obtain, e.g. an effective weight
ω[eff]
1 = 1.35, the actually assigned weight has to be 1.44 in

case of the short example code as marked by the red circle in
Fig. 1(a).

IV. B OUNDS ON THESYMBOL ERASUREPROBABILITY

FOR UEP LT CODESUSING BIASED SAMPLING

In the following, we will derive a lower and an upper bound1

on the symbol erasure probabilityP [ML,S]
q,τ in importance class

τ for weighted UEP LT codes overFq under ML decoding,
where the codes are constructed using biased sampling.

Analogously to the binary EEP case [4], a lower bound on
the symbol erasure rateP [ML,S]

q,τ is given by the probability that

1For notational convenience, we will implicitly assume that probabilities
and their bounds are limited from above by one, i.e. the operation min{1, · }
is omitted.
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an input node in classτ is not connected to a check node:

P [ML,S]
q,τ =

(

1−

dmax
∑

d=d1+...+dT=1

P (d)
dτ

kq,τ

)kqγR

. (5)

The following derivation of the upper bound on the symbol
erasure probabilityP [ML,S]

q,τ in classτ for UEP LT codes over
Fq with biased sampling is inspired by the one in [6] for binary
weighted UEP LT codes based on rounded class degrees.

Lemma 1. Given the generator matrix G of a UEP LT code of
length kq , with check node degree distribution Ω(x), T impor-
tance classes of sizes kq = (kq,1, kq,2, . . . kq,T ) and weights
ω = (ω1, ω2, . . . ωT ) that is created using biased sampling,
an upper bound on the symbol erasure probability P

[ML,S]
q,τ is

given in Eq. (6) on the following page, where γR = 1 + εR
is the inverse reception rate. The non-zero elements in G are
chosen with equal probability from Fq \ {0}.

Proof: The probabilityP [ML,S]
q,τ is equal to the probability

that theith Fq-symbol cannot be determined by ML decoding
for an arbitraryi ∈ τ , whereτ is the set of input node indices
in importance classτ

P [ML,S]
q,τ =Pr

{

∃u ∈ F
1×kq
q , ui = a : G′uT = 0T

}

, (7)

with arbitrary but fixeda ∈ Fq\{0}. The right-hand side of (7)
is the probability of theith column of the decoding matrixG′

being linearly dependent on a non-empty set of columns. This
can be upper bounded by the probability of any possible set
of columns ofG′ being linearly dependent on columni ∈ τ

P [ML,S]
q,τ ≤ P

[ML,S]

q,τ =
∑

u∈F
1×kq
q ,

ui=a

Pr
{

G′uT = 0T
}

. (8)

Due to the random and independent construction of check
nodes, thekqγR rows of G′ can be viewed as the outcomes
of independent trials of a random variabler ∈ F

1×kq
q , where

r = (r1, r2, . . . rT ) with rj ∈ F
1×kq,j
q and 1 ≤ j ≤ T . Also

the vectoru can be expressed asu = (u1, u2, . . .uT ) with
uj ∈ F

1×kq,j
q :

P [ML,S]
q,τ =

∑

u∈F
1×kq
q ,

ui=a

(

Pr
{

ruT = 0
})kqγR

. (9)

The weight of a vector overFq equals the number of
non-zero elements and is denoted| · |. Now, the probability
Pr
{

ruT = 0
}

is determined, conditioned on|rj | = dj and
|uj | = wj , ∀j. A row r has weights(|r1| , |r2| , . . . |rT |) = d

with probabilityP (d) as given in (4), and there are

(q − 1)
w−1





T
∏

j=1

(

kq,j − δτ,j

wj − δτ,j

)





choices of u = (u1, u2, . . .uT ) of weights
w = (w1, w2, . . . wT ) with ui = a and i ∈ τ ,
where δτ,j is the Kronecker delta function. Let
v = (v1, v2, . . . vT ) = (v1, v2, . . . vkq

) with vl = rlul,

wherevl, rl and ul are thelth elements of the vectorsv, r
andu, respectively, then we obtain Eq. (10) on the next page.
The first term in (11) is

Pr







kq
∑

j=1

vj = 0
∣

∣

∣
|v | = s







=
1

q

(

1− (1− q)
1−s
)

. (12)

according to [10, Eq. (13)] while the second term in (11) is

Pr
{

|v | = s
∣

∣

∣ | r | = d, |u | = w
}

=

T
∏

j=1

Pr
{

|vj | = sj

∣

∣

∣ | rj | = dj , |uj | = wj

}

(13)

with the probability of occurrence of exactlysj non-zero
elements in the subvectorvj

Pr
{

|vj | = sj

∣

∣

∣ | rj | = dj , |uj | = wj

}

=

(

wj

sj

)(

kq,j−wj

dj−sj

)

(

kq,j

dj

) .

Reassembling all terms yields Eq. (6) on the following page
which concludes the assertion.

The resulting bounds are exemplarily illustrated in Fig. 2 for
three short LT codes with degree distributionΩ(x) as given
in (2), k2 = 100 and two importance classes. The codes are
constructed either according to the method in [6] (green and
blue) or by using biased sampling (red).

V. CONCLUSION

In this paper we provide an analysis of finite length LT
codes over higher order Galois fieldsFq for unequal error
protection (UEP) under ML decoding when the UEP property
is established by assigning appropriate weights to the different
importance classes. According to the weights, the edges of a
check node have different probabilities to be connected to the
input nodes of the different classes. In contrast to the literature,
the number of input nodes in an importance class that is
connected to a check node of degreed is not fixed. Instead,
the connections are determined using biased sampling, which
can be described by the multivariate Wallenius’ noncentral
hypergeometric distribution. Our main contribution is the
derivation of importance class specific upper and lower bounds
on the symbol erasure probability under ML decoding for the
biased sampling code construction method.

Our biased sampling approach enables continuous effective
UEP weights as a function of the target weights. For properly
chosen degree distributions, the effective UEP weights are
even equal to the target weights, while this is not the case inthe
approach from the literature, in which a rounding operationis
used. Though this rounding operation significantly simplifies
especially the computation of the upper bound on the symbol
erasure probability, it introduces discontinuities in theeffective
weights as a function of the target weights, which leads to
deviations of the protection levels of the respective importance
classes from the targeted ones.
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P
[ML,S]

q,τ =

kq
∑

w=w1+...+wT=1
wτ≥1

(q − 1)
w−1

(

T
∏

i=1

(

kq,i − δτ−i

wi − δτ−i

)

)

·

(

dmax
∑

d=d1+...+dT=1

P (d)
d
∑

s=s1+...sT=0

1

q

(

1− (1− q)
1−s
)

T
∏

i=1

(

wi

si

)(

kq,i−wi

di−si

)

(

kq,i

di

)

)kqγR

(6)

P
[ML,S]

q,τ =

kq
∑

w=w1+...+wT=1
wτ≥1

(q − 1)
w−1





T
∏

j=1

(

kq,j − δτ,j

wj − δτ,j

)





·

(

dmax
∑

d=d1+...+dT=1

P (d) Pr
{

ruT = 0
∣

∣

∣

∣

∣

∣| r1 | = d1, . . . | rT | = dT , |u1 | = w1, . . . |uT | = wT

}

)kqγR

(10)

with

Pr
{

ruT = 0
∣

∣

∣

∣

∣

∣| r1 | = d1, . . . | rT | = dT , |u1 | = w1, . . . |uT | = wT

}

=

d
∑

s=s1+...sT=0

Pr







kq
∑

j=1

vj = 0
∣

∣

∣ |v | = s







· Pr
{

|v | = s
∣

∣

∣ | r | = d, |u | = w
}

. (11)
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Fig. 2. Upper and lower bounds for three UEP LT codes withk2 = 100,
two importance classes and relative class sizes of 0.1 and 0.9.
An effective weightω[eff]

1
= 1.35 shall be obtained. The weights

ω1 that yield the closest values toω[eff]
1

for the different code
construction methods are highlighted in Fig. 1(a) by round markers
with corresponding colours. Using the rounded degrees method,
the envisagedω[eff]

1
= 1.35 cannot be reached. The closest one

can get is by using eitherω1 = 1.66 (ω[eff]
1

= 1.187, green
curves) orω1 = 1.67 (ω[eff]

1
= 1.534, blue curves). In one case

(blue), class 1 is protected too well at the cost of class 2, while
in the other case (green), class 1 is not protected sufficiently. With
this method, the protection levels between the green and the blue
curves are not achievable with the given code parameters. Using the
biased sampling method, however, any effective weight and thus any
protection level can be obtained, in this case by settingω1 = 1.44

(red curves).


