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Abstract—Low-density random linear fountain (LDRLF) codes
are a type of LT (Luby transform) codes with optimum erasure
correction under maximum likelihood (ML) decoding given a
certain density or average check node degree. The upper bound
on the residual symbol erasure rate is very tight and can be
used for the design of LDRLF codes instead of performing time-
consuming simulations. Using LDRLF codes for unequal error
protection (UEP), the excellent erasure correction performance is
maintained as well as the tightness of the upper bounds for each
importance class. Since the UEP upper bounds may be complex
to compute, we provide an extremely good approximation thereof
which is well suited to design UEP LDRLF codes. Furthermore,
we provide a heuristic criterion that has to be fulfilled in order
to yield good approximations.

I. I NTRODUCTION

Fountain codes are rateless erasure correcting codes that
have been proposed in [1] as an alternative to retransmission
schemes to recover packets in lossy packet-switched com-
munication networks. LT (Luby transform) codes [2], Raptor
codes [3] and Online codes [4] are practical realisations of
rateless codes for which simple and efficient encoding and
decoding algorithms exist. Originally, rateless codes have been
developed for the binary erasure channel (BEC) where they
exhibit the universality property, i.e. these codes perform
close to the optimum at any erasure probability smaller than
one. Especially in point-to-multipoint transmission scenarios,
where the users experience individual and independent packet
losses, this property is very useful.

The first works on rateless codes aimed at equal error
protection (EEP) of data, which is used, e.g. for the distri-
bution of bulk data, while in the recent years some proposals
for rateless codes with unequal error protection (UEP) have
followed to support, e.g. audio or video transmission where
some parts of the data are more important than others and
therefore need a stronger protection. The first rateless UEP
scheme for LT codes is the weighted UEP approach by
Rahnavard et al. [5], followed by the expanding window (EW)
method by Sejdinovic et al. [6]. In the following, we consider
only the weighted UEP method, however, with a modified
code construction based onbiased sampling [7]. In contrast
to the original weighted UEP method in [5], where only
discrete protection levels can be attained, biased sampling of
the input symbols allows forcontinuous effective weights of
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the differently important data parts which implies precisely
adjustable protection levels.

Our work aims at codes for delay sensitive applications, and
thus only short codes are considered. Since for short codes
maximum likelihood (ML) decoding is the only decoding
algorithm that shows a good error correcting performance, it
is preferred to belief propagation (BP) decoding, despite the
higher complexity of the former. Furthermore, we focus on so-
called low-density random linear fountain (LDRLF) codes [8],
[9], a type of LT codes that exhibits optimal erasure correction
performance under ML decoding given a fixed average degree
or density. Both the erasure correction performance as well
as the computational complexity increase with the density [9].
Therefore, the density should be minimised as far as possible,
provided that the target erasure correction performance is
achieved.

In [7] upper and lower bounds on the residual symbol
erasure probability have been derived for UEP LT codes under
ML decoding for the biased sampling construction method.
However, the computation of these bounds (especially the
upper bounds) (see [7, Eqs. (5) and (6)]) can be quite time-
consuming if the input size is large (≫ 100), since the
complexity is polynomial in the input size. An additional
significant slowdown occurs if there are more than 3 or 4
importance classes or if the degree distribution is not sparse,
i.e. if the number of degrees with non-zero probability is large.
The computation of the bounds is one of the first steps in the
design of LT codes, but for UEP LT codes this step can become
unhandy.

For (UEP) LDRLF codes the upper bound is extremely close
to the actual symbol erasure rate after ML decoding [8], [9].
Thus, the upper bound can be used for the design of appro-
priate codes instead of running time-consuming simulations.
However, the degree distribution of LDRLF codes is not sparse
which is one of the main factors that increase the computation
time of the upper bound and thus diminishes the time savings
of code design by bound computation instead of by running
simulations. Nevertheless, we have found a way to design UEP
LDRLF codes by using the upper bounds of equivalent EEP
LDRLF codes that can be computed very fast.

The paper is organised as follows: in Section II, we give
a brief overview on LT codes over higher order Galois fields
and on LDRLF codes. We summarise the original weighted
UEP approach in Section III and explain the modification
introduced by using biased sampling in Section III-A. The
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main part, i.e. the design of UEP LDRLF codes by means of
the upper bounds of equivalent EEP LDRLF codes is detailed
in Section IV.

II. LT C ODES OVERFq

We consider LT codes over Galois fieldsFq of order
q = 2m, wherem ≥ 1. With rateless codes, the transmitter
can generate a potentially infinite numbernT of encoded
symbolsy = (y1, y2, . . . ynT

) from a finite amount ofkq input
symbolsu =

(

u1, u2, . . . ukq

)

. Though in practice the input
and output symbolsui andyj consist ofl Fq-elements each,
we usel = 1 in the following, since the erasure correction
performance of the codes is independent ofl [2]. Fq-elements
have an equivalent binary representation requiringm bits per
element. To allow for a fair comparison of codes over Galois
fields of different orders, we fix the numberk = k2 of input
bits and distribute them tokq = ⌈ k2

ld q
⌉ = ⌈k2

m
⌉ input symbols.

The input size of a code overFq with q = 2m is thuskq. Using
good rateless codes, the receiver is able to decode the original
kq input symbolsu from any nR = kq(1 + εR) received
code symbols with high probability if the relative reception
overhead isεR ≥ 0 but small.

The generator matrixG ∈ F
nT×kq

q of an LT code, with
q = 2m, defines a weighted graph that connects the set of
kq input nodesu ∈ F

1×kq

q to the set ofnT output nodes
y ∈ F

1×nT
q , wherenT can be arbitrarily large. A more detailed

description ofbinary LT codes can be found in [2].
The input symbols are assigned to input nodes and the

output symbols are assigned to output nodes that are also
called check nodes. In vector-matrix notation we encode by
yT = GuT. In contrast to traditional block codes,G is
generated online and may differ for each data block.G is
assumed to be known at the decoder. This can be achieved by
synchronised pseudo-random processes that produceG.

The erasure correcting performance of an LT code is largely
defined by its check node degree distributionΩ1, Ω2, . . .Ωkq

,
where a check node has degreed ∈ {1, 2, . . . kq}, i.e. it is
connected tod distinct input nodes, with probabilityΩd. The
degree distribution is often described by its generating poly-
nomial Ω(x) =

∑kq

d=1 Ωd x
d. For EEP thed connected input

nodes are chosen uniformly at random, i.e. with probability
p = 1

kq
, from the set ofkq input nodes, while for UEP the

input nodes are first assigned toT importance classes. The
input nodes of different classes have different probabilities of
being chosen to be connected to a check node. The exact UEP
construction is explained in Section III.

The d non-zero entries in a row of the generator matrixG

correspond to the weights of thed edges between a check node
and d input nodes. The value of a check node is determined
by adding up the product of each value of thed input nodes
with the weight of the corresponding connecting edge. The
non-zero entries ofG are sampled uniformly at random from
the set ofq − 1 non-zeroFq-elements.

At the encoder,nT output symbols are generated, which
are then transmitted over a symbol erasure channel (SEC)
that randomly erases some of the transmitted Galois field

symbols. Finally, the decoder tries to reproduce the original kq
input symbols from thenR ≤ nT received symbols. Having
collectednR output symbols, the decoder uses thenR rows of
G that are associated with the collected, non-erased symbols
to form a new matrixG′ which is used for decoding. Since
G′ consists of a set ofnR rows sampled at random from the
original matrixG according to the erasures that occur on the
SEC,G′ has the same statistical properties asG.

The most popular decoding algorithm for LT codes is
the computationally cheap, though suboptimal, BP decoding
algorithm that performs well on properly designed codes, but
only for large blocklengths. The optimal decoding algorithm
(optimal in the sense of minimal symbol erasure probability
at a certain reception overhead) is ML decoding, which, in
the case of the erasure channel, is equivalent to solving a
consistent system ofnR linear equations inkq unknowns by
means of Gaussian elimination (GE). GE is computationally
expensive for large input sizes, but it is affordable for short
codes. Moreover, considering delay sensitive applications, the
usage of short codes is inevitable and in such a case the
ML decoding algorithm is the only decoding algorithm that
exhibits a good performance.

A. Low-Density Random Linear Fountain Codes

Low-density random linear fountain (LDRLF) codes [8],
[9] are a class of LT codes with optimal erasure correction
performance under ML decoding, given a fixed density∆ or
average degreēΩ = ∆ · kq =

∑kq

d=1 dΩd and a fixed input
sizekq. The density∆ of an LT code overFq is the ratio of
the number of non-zero entries in the generator matrix to the
total number of entries.

LDRLF codes have the following degree distribution1:

Ω(x) =

kq
∑

d=0

Ωdx
d

=

kq
∑

d=0

(

kq
d

)

P d
¬0(1− P¬0)

(kq−d)xd (1)

which results from sampling a zero entry in the generator
matrix G with probability P0 > 1

q
and a non-zero entry

with probabilityP¬0 < q−1
q

. The non-zero entries are chosen
uniformly at random from the set ofq − 1 non-zero Galois
field elements. The probabilityP¬0 is equivalent to the density
∆. In contrast to conventional random linear fountain (RLF)
codes [3], [10], [11], the low-density variant is encodableand
decodable with a significantly lower complexity.

For EEP LDRLF codes a lower and an upper bound on the
symbol erasure probabilityP [ML,S]

q are given in [9]. The lower

1In practical systems and also in our simulationsΩ0 equals zero. Thus,
a modification of the probabilitiesΩd for d > 0 is necessary, in order to
obtain

∑kq

d=1 Ωd = 1 and to maintain a constant average check node degree.
However, for not too small input sizeskq or average check node degreesΩ̄,
the induced error of consideringΩ0 6= 0 as in (1) is negligible.
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bound is

P [ML,S]
q =

(

1−
Ω̄

kq

)kqγR

= (1− P¬0)
kqγR (2)

and the upper bound is

P
[ML,S]

q =

kq
∑

w=1

(

kq − 1

w − 1

)

(q − 1)
w−1

·

(

1

q
+

q − 1

q

(

1−
q

q − 1
P¬0

)w)kqγR

, (3)

whereγR = 1+εR is the inverse reception rate. For notational
convenience, we will implicitly assume that probabilitiesand
their bounds are limited from above by one, i.e. the operation
min{1, · } is omitted. An important feature of the above upper
bound of LDRLF codes is that it is extremely close to the
actual symbol erasure probabilityP [ML,S]

q , i.e. it can be used
for code design instead of time-consuming simulations. This
characteristic feature can also be found with the upper bound
on the symbol erasure rate of each importance class when
constructing UEP LDRLF codes.

III. W EIGHTED UNEQUAL ERRORPROTECTION

The kq input nodes are first assigned toT importance
classes, where importance classτ has sizekq,τ = ατkq, with
1 ≤ τ ≤ T , 0 ≤ ατ ≤ 1 and

∑T

i=1 αi = 1, whereατ is
the relative size of classτ . According to the importance of
the classes, weighting factorsωτ are chosen such that the new
initial probability of connecting input nodeι from classτ to
the current check node ispτ,ι = ωτ

kq
= ωτp. Since pτ,ι is

equal for all input nodesι within classτ we simply usepτ
instead ofpτ,ι. Thus,

∑T

i=1 pikq,i =
∑T

i=1 ωiαi = 1. In the
original weighted UEP approach [5, Sec. IV] the numberdτ
of input nodes from an arbitrary classτ that are connected
to a check node of degreed is set tomin([ατωτd] , kq,τ ),
where [x] means rounding to the nearest integer. Although
this rounding operation simplifies the analysis significantly, it
comes with a major drawback, namely it causes the effective
weights

ω[eff]
τ =

Ω̄τ

ατ Ω̄
=

dmax
∑

d=1

Ωd min([ατωτd] , kq,τ )

ατ Ω̄
, (4)

as given in [7] to deviate from the target weightsωτ . The
numerator in (4) is the effective average degreeΩ̄τ of classτ ,
while the denominator is the average degree of classτ in the
EEP case. Furthermore, only a discrete set of effective weights
ω[eff]
τ is obtained. This means that the effective protection

levels deviate from the targeted ones and also the set of
protection levels becomes discrete.

A. UEP LT Code Construction by Biased Sampling

In order to allow for a continuous relation between the target
protection levelsωτ and the effective onesω[eff]

τ , a different
construction method has been analysed in [7], where biased
sampling is used to select the input nodes from the different

p1 = 1
4 p2 = 1

12

(a) k′q,1 = 2 andk′q,2 = 6

p1 = 1
3 p2 = 1

9

(b) k′q,1 = 1 andk′q,2 = 6

p1 = 3
8 p2 = 1

8

(c) k′q,1 = 1 andk′q,2 = 5

p1 = 3
7 p2 = 1

7

(d) k′q,1 = 1 andk′q,2 = 4

p1 = 1
2 p2 = 1

6

(e) k′q,1 = 1 andk′q,2 = 3

p1 = 0 p2 = 1

(f) k′q,1 = 0 andk′q,2 = 3

Fig. 1. One possible realisation of connecting source nodesto a check
node of degreed = 5 via biased sampling given an input size of
kq = 8, T = 2 importance classes of relative sizesα1 = 0.25
andα2 = 0.75 and class weightsω1 = 2 andω2 = 2

3
. After each

draw, the probabilitiesp1 andp2 of connecting an edge to a specific
input node of class 1 or 2 have to be updated, taking into account
the remainingk′q,1 andk′q,2 unconnected input nodes in either class,
i.e. p1 = ω1

ω1k
′

q,1+ω2k
′

q,2
andp2 = ω2

ω1k
′

q,1+ω2k
′

q,2
.

classes to be connected to the current check node of degreed.
We review the relevant parts of this approach using the same
notation as in [7]. Additionally, we illustrate the sampling
process by means of a comprehensive example.

Biased sampling of input nodes can be described by an
equivalent urn model, whered balls are drawn one by one
without replacement from an urn that containskq =

∑T

i=1 kq,i
balls of T different colours and each ball of colourτ has
weight ωτ . The probability of picking a ball of a particular
colour at a particular draw is proportional to its relative
weight with respect to the total weight of the remaining
balls. An example is provided in Fig.1. Biased sampling
has been analysed by Wallenius [12] for the univariate case
(T = 2). The generalisation to the multivariate case is due
to Chesson [13]. The partitioning of the overall degreed into
class degrees dτ , with

∑T

τ=1 dτ = d, consequently can be
characterised by the so-called multivariate Wallenius’ noncen-
tral hypergeometric distribution [12], [13], which expresses the
conditional probability mass function (pmf)

P
(

d1, . . . dT−1

∣

∣

∣
d; kq, ω

)

=

(

T
∏

i=1

(

kq,i
di

)

) 1
∫

0

T
∏

i=1

(

1− t
ωi

ω(kq−d)

)di

dt. (5)

The vectorsd, kq and ω denote the class degreesd =
(d1, d2, . . . dT ), the class sizeskq = (kq,1, kq,2, . . . kq,T ) and
class specific target weightsω = (ω1, ω2, . . . ωT ). Eq. (5) can
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be evaluated by numerical integration as described in [14] us-
ing the BiasedUrn R package [15]. Without loss of generality,
the degreedT is not explicitly mentioned in the left-hand side
of (5), since it is included implicitly due to

∑T

τ=1 dτ = d. We
omit the parametrisation with the class sizeskq and weights
ω to simplify the notation and define the joint pmf as

P (d) = P (d1, . . . dT ) = P (d1, . . . dT−1, d)

= P (d) · P
(

d1, . . . dT−1

∣

∣

∣
d; kq, ω

)

, (6)

whereP (d) = Ωd, i.e. the coefficientsΩd of the check node
degree distributionΩ(x).

In the remainder of this paper we will use the following
simplified notation: Given an arbitrary functionf(d), the
collated sum

dmax
∑

d=d1+...+dT=1

f(d) denotes
∑

d1

. . .
∑

dT

f(d),

where the sums are calculated for all combinations of the
values ofd = (d1, d2, . . . dT ) for which 1 ≤ d ≤ dmax and
∑T

τ=1 dτ = d. Additionally, 0 ≤ dτ ≤ min(d, kq,τ ) with
1 ≤ τ ≤ T .

In the case of the biased sampling code construction
method, the effective weight is

ω[eff]
τ =

Ω̄τ

ατ Ω̄
=

∑

dτ

P (dτ ) dτ

ατ Ω̄
=

dmax
∑

d=d1+...+dT=1

P (d) dτ

ατ Ω̄
,

where Ω̄τ is the average degree of classτ and P (dτ ) is
obtained by marginalisingP (d).

A lower and an upper bound on the symbol erasure rate
P

[ML,S]
q,τ of importance classτ are given by [7]

P [ML,S]
q,τ =

(

1−

dmax
∑

d=d1+...+dT=1

P (d)
dτ
kq,τ

)kqγR

(7)

and by eq. (8) on the next page, respectively.

IV. A PPROXIMATION OFPERFORMANCEBOUNDS

The computation of these bounds (especially the upper
bound) can be quite time-consuming if the input size is large
(kq ≫ 100), if the numberτ of importance classes is greater
than 3 or 4 or if the degree distribution is not sparse. However,
the approximation of the UEP code bounds with the bounds of
equivalent EEP codes is only feasible for LDRLF codes, not
for LT codes in general. Since LDRLF codes are parametrised
with the average degreēΩ (or the density∆) and the input
size kq, equivalent EEP LDRLF codes can be found easily:
an EEP LDRLF code is suited to approximate the bounds
of importance classτ of a UEP LDRLF code if the codes
have the same overall input sizekq and if the EEP generator
matrix G[EEP]

τ has the same density as the UEP generator
matrix G[UEP] in the columns that cover importance classτ ,
i.e. ∆τ = ∆[EEP]

τ = ∆[UEP]
τ = Ω̄τ/kq,τ . The design of an

equivalent EEP LDRLF code is illustrated in Fig. 2.

G
[EEP]
3 G[UEP]

n
T

n
T

kq

kq kq,1 kq,2 kq,3

∆3 = ∆[EEP]
3 = ∆[UEP]

3 ∆[UEP]
1 ∆[UEP]

2 ∆[UEP]
3

Fig. 2. Illustration of the design of an EEP LDRLF code that can be used
to approximate the bounds of the third importance class of a UEP
LDRLF code which is constructed by means of biased sampling.

In Fig. 4 upper and lower bounds on the symbol erasure
probability P

[ML,S]
q,τ under ML decoding are depicted in red

for three different binary UEP LT codes A, B and C that are
constructed by biased sampling. The input size isk2 = 100
and there areT = 2 importance classes of relative sizes
α1 = 0.1 and α2 = 0.9. For example by using the red
characteristics in Fig. 3 for the respective codes, the weights
ωτ can be determined such that the effective weights are
ω[eff]
1 = 1.5 andω[eff]

2 = 0.9444.
Code A is a UEP LT code that is based on the well-

known degree distributionΩA(x) = 0.007969x+0.49357x2+
0.16622x3 + 0.072646x4 + 0.082558x5 + 0.056058x8 +
0.037229x9+0.05559x19+0.025023x65+0.003135x66 which
is taken from [3] and that has been optimised for belief
propagation (BP) decoding. The overall average degree is
Ω̄A = 5.87, while the average degree of classτ is Ω̄A,τ =
ω[eff]
τ ατ Ω̄A , i.e. Ω̄A,1 = 0.8805 and Ω̄A,2 = 4.9895. Code

C is a UEP LDRLF code that is designed to have the same
average degrees as code A. Code A is just included to show
the difference in the erasure correction performance of a BP
optimal code and an ML optimal code of the same density.
Code B is a UEP LDRLF code with an overall average degree
Ω̄B = 7. The class specific average degrees areΩ̄B,1 = 1.05
and Ω̄B,2 = 5.95.

For the LDRLF codes (codes B and C), the upper bounds
are approximated by the bounds of equivalent EEP codes
which are depicted in black in Fig. 4. The lower bounds of
EEP and UEP codes are equal (no approximation), while the
approximations to the upper bounds of code B (the denser
code) match significantly better than the ones for code C.

For a sufficiently accurate approximation, the following
condition has to be fulfilled. Without loss of generality let
classT be the least protected class. Then the average degree
Ω̄T of the least protected class should be

Ω̄T ≥ c · αT , (9)
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P
[ML,S]

q,τ =

kq
∑

w=w1+...+wT=1
wτ≥1

(q − 1)
w−1

(

T
∏

i=1

(

kq,i − δτ−i

wi − δτ−i

)

)

·

(

dmax
∑

d=d1+...+dT=1

P (d)
d
∑

s=s1+...sT=0

1

q

(

1− (1− q)
1−s
)

T
∏

i=1

(

wi

si

)(

kq,i−wi

di−si

)

(

kq,i

di

)

)kqγR

(8)

ideal caseω[eff]
1 = ω1 rounded degreesdτ = min([ατωτd] , kq,τ ) biased sampling
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(a) UEP LT code withΩA(x).
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(b) UEP LDRLF code withΩB(x).
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(c) UEP LDRLF code withΩC(x).

Fig. 3. The effective weightω[eff]
1 of class 1 as a function of the target weightω1 for three UEP LT codes of input sizek2 = 100 and two classes of relative

sizesα1 = 0.1 andα2 = 0.9. Since the red curves (biased sampling) are continuous, the deviations from the ideal line can be compensated easily.

wherec is at least 6. This heuristic arises from the observation
that EEP LDRLF codes with too low average degrees (Ω̄ < 6)
degenerate, i.e. the characteristic waterfall region is very small
and converges directly to the high error floor. The error floor
lowers with increasing average degree. The effect of a too low
average degree in importance class 2 can be observed for code
C in Fig. 4(c). WithΩ̄C,2 = 4.9895 < 6 · 0.9 = 5.4, the above
condition is not fulfilled by code C. Since the two classes are
connected by common check nodes, the less protected class
weakens the better protected class and the better protected
class improves decoding for the less protected class, both
compared to the corresponding EEP code. Especially the
weakening of the better protected class is clearly visible as
this class is very small compared to the less protected class.

If condition (9) is met, which is the case for code B, where
we have Ω̄B,2 = 5.95 > 5.4, the UEP upper bounds and
their EEP approximations virtually coincide. In Fig. 4(b) they
overlap for both importance classes.

A design rule for UEP LT codes in general is to set the
weights such that the resulting density of the best protected
class does not exceed1 − 1

q
. Increasing the density beyond

1− 1
q

would decrease the protection level again.

V. CONCLUSION

Low-density random linear fountain (LDRLF) codes exhibit
their excellent erasure correction performance under maximum
likelihood (ML) decoding also when used for unequal error

protection (UEP). The tightness of the upper bound on the
symbol erasure probability in the case of equal error protection
(EEP) makes this bound an ideal tool to design LDRLF
codes without extensive simulations. Using LDRLF codes for
UEP this tightness of the upper bounds is preserved for all
importance classes. Although the computation of the UEP
upper bounds (8) can be quite complex, we have shown that
using the upper bounds (3) of equivalent EEP LDRLF codes
constitutes a simple and highly accurate alternative to the
computation of the UEP bounds.
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(a) ΩA(x), ∆A = 5.87%, ∆A,1 = 8.81%, ∆A,2 = 5.54%.
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(b) LDRLF code,ΩB(x), ∆B = 7.00% ∆B,1 = 10.5%, ∆B,2 = 7.78%.
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(c) LDRLF code,ΩC(x), ∆C = 5.87%, ∆C,1 = 8.81%, ∆C,2 = 5.54%.
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