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Analysis of LT Codes over Finite Fields

under Optimal Erasure Decoding
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Abstract—The erasure correction performance of Luby trans-
form (LT) code ensembles over higher order Galois fields is
analysed under optimal, i.e. maximum likelihood (ML) erasure
decoding. We provide the complete set of four bounds on the
erasure probability after decoding on word as well as on symbol
level. Especially the upper bounds are extremely close to the
simulated residual erasure rates after decoding and can thus be
used for code design instead of time-consuming simulations.

Index Terms—Fountain codes, maximum likelihood decoding,
random matrices, finite fields.

I. INTRODUCTION

Luby transform (LT) codes [1] are the first practical reali-

sation of digital fountain codes [2], a protocol devised for an

efficient erasure resilient information transmission in packet-

based communication networks, particularly in broadcast or

multicast scenarios. Fountain codes are rateless codes, i.e.

they allow to generate on the fly an arbitrary number1 nT

of encoded symbols yT from a finite set of k input symbols

x and in practice, decoding should be possible from any

nR = k(1 + εR) received encoded symbols yR, where εR
is the small and non-negative relative reception overhead.

LT codes usually constitute the rateless component in a com-

pound code, in which a high rate precode cleans up the erasure

floor which is specific to LT codes. Though designed for

belief propagation (BP) decoding which only performs well for

large input sizes k, lately LT codes under maximum likelihood

(ML) decoding2 have received an increasing attention due to

the superior erasure correction performance for practical, i.e.

short to medium input sizes. Also the extension to higher

order Galois fields Fq with q = 2m and m ∈ N, has proven

beneficial [3]–[5] in terms of erasure correction performance

and in [5] also in terms of computational complexity.

We begin with a brief introduction to LT codes over higher

order Galois fields in Sec. II. In [5] we have derived a pair

of upper and lower bounds on the residual symbol erasure

probability. In Sec. III, we now complete the picture by

contributing a practically more relevant pair of bounds on the

residual word erasure probability. Since especially the upper

bounds are extremely close to the simulated residual erasure

rates, these can be used for code design instead of performing

time-consuming Monte Carlo simulations.
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II. LT CODE ENSEMBLES OVER Fq

LT codes are linear codes, i.e. an arbitrarily long codeword

yT ∈ F
nT

q is generated by yT = GTx, where x ∈ F
k
q is

the information or input word and GT ∈ F
nT×k
q is an LT

generator matrix at the transmitter taken from the ensemble

GT. Considering the equivalent bipartite LT code graph, the

input symbols are denoted input nodes and the encoded

symbols are called output nodes. The edges connecting the

two types of nodes are defined by the generator matrix. Each

matrix is created row-wise by a random process that first

determines the row weight by means of a so-called output

degree distribution. This distribution is usually given in terms

of its generator polynomial Ω(ξ) =
∑k

d=0 Ωd ξ
d, where Ωd is

the probability of creating a row with d non-zero entries. The d

entries are chosen uniformly at random without repetition from

the set of k possible entries and are assigned non-zero values

chosen uniformly at random with repetition from Fq \ {0}.

The codeword is transmitted symbol-wise over a q-ary

erasure channel that randomly erases encoded symbols with

a certain probability. At the receiver, only the non-erased

encoded symbols are taken into account and are reassembled to

yR ∈ F
nR

q . The rows of GT that are associated to the erased

symbols are useless to the receiver and are not considered

anymore, leading to a new matrix GR ∈ F
nR×k
q , which

however, has the same row weight distribution as GT, i.e. if

GT ∼ Ω(ξ), also GR ∼ Ω(ξ). ML decoding is performed,

which in case of a transmission over an erasure channel

is equivalent to solving yR = GRxR, a system of nR

consistent linear equations in k unknowns. Besides Gaussian

elimination, there exist several computationally more efficient

ML decoding algorithms, e.g. [6], [7], that are preferred to

stand-alone BP decoding in practical systems [4], [8] due to

the superior erasure correction performance of ML decoding.

III. BOUNDS ON THE WORD AND SYMBOL ERASURE

PROBABILITY OF LT CODE ENSEMBLES

In this section, we provide the complete set of four bounds

on word as well as on symbol level under ML decoding.

1In the fountain coding setup a receiver centric view is common that
penalises a wasteful use of reception code rate rR = k/nR, but not the use of
the channel by the transmitter [9]. Therefore, in order to clearly differentiate
between transmitter or receiver related quantities, an index ”T” or ”R” is
used if required. Moreover, we use the following notation: scalars are written
in italic type (e.g. x). Boldfaced lower case letters denote column vectors (e.g.
x), while boldfaced capital letters denote matrices (e.g. X). The corresponding
random variables are set in sans serif font, e.g. x for random variables, x for
random vectors and X for random matrices.

2Note that on erasure channels, optimal decoding is accomplished by
means of ML decoding which is equivalent to MAP (maximum-a-posteriori)
decoding independently of the priors.
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We have derived bounds on the symbol erasure probability

already in [5], of which the upper bound is a generalisation

to higher order Galois fields of an expression from [10]. We

include these bounds on symbol level for completeness. In

the following, symbol erasures are marked by �S and word

erasures by ��W , whereas upper and lower bounds on a certain

probability P are denoted P and P , respectively.

A. Upper Bounds

Theorem 1. Given an LT code ensemble GR ∼ Ω(ξ) over Fq,

an upper bound on the word erasure probability P [ML]
(

��W
)

after ML decoding is3

P
[ML] (

��W
)

=

k
∑

w=1

(

k

w

)

(q − 1)
w−1

·











1

q

∑

d

Ωd

d
∑

l=0

(

w

l

)(

k−w

d−l

)

[

1− (1− q)
1−l
]

(

k
d

)











kγR

(1)

=

k
∑

w=1

(

k

w

)

(q − 1)
w−1

[

1

q
+
q − 1

q

∑

d

Ωd

Kd(w; k)

Kd(0; k)

]kγR

(2)

with the inverse reception code rate γR = 1 + εR ≥ 1. The

second, more compact variant comprises the well-known

Krawtchouk polynomial4 Kd( · ; · ).

Proof: The probability P [ML]
(

��W
)

is equal to the prob-

ability that GR does not have full column rank

P [ML]
(

��W
)

= Pr {rank(GR) < k} ,

i.e. the probability that the kernel of GR is non-trivial,

P [ML]
(

��W
)

= Pr {∃x ∈ ker(GR) \ {0}} . (3)

This is equivalent to the probability that an arbitrary informa-

tion word cannot be uniquely determined, since the solution

of GRx = yR is a (k − rank(GR))-dimensional vector

space. This probability can be upper bounded by the expected

cardinality of the non-trivial kernel of GR

P [ML]
(

��W
)

≤ E {|ker(GR) \ {0}|} .

However, this bound can be tightened by a factor of q − 1,

since we can exploit the fact that if some x ∈ ker(GR) \ {0},

then also ax ∈ ker(GR) \ {0}, ∀a ∈ Fq \ {0}. And in order

to bound (3) from above, it is sufficient to consider just one

of the q − 1 scaled versions of x

P [ML]
(

��W
)

≤ P
[ML] (

��W
)

=
1

q − 1
· E {|ker(GR) \ {0}|} ,

3For notational convenience it is implicated that probabilities and their
bounds are limited from above by one and the operation min{1, · } is omitted.

4The Krawtchouk polynomial is defined as (cf. e.g. [11])

Kς(ξ; ν) =

ς
∑

i=0

(−1)i (q − 1)ς−i
(ξ

i

)(ν − ξ

ς − i

)

,

for any positive integer ν and ς = 0, 1, . . . , ν as well as a prime power q
and a non-negative indeterminate ξ.

and w.l.o.g. we do so by counting only those vectors x that

have been normalised w.r.t. their first non-zero entry, i.e.

vectors x whose first non-zero entry is xi = 1:

P
[ML] (

��W
)

=
∑

x∈F
k
q ,

x 6=0, xi=1

Pr {GRx = 0} .

The kγR rows of GR can be viewed as the outcomes of

independent trials of a random variable r ∈ F
k
q :

P
[ML] (

��W
)

=
∑

x∈F
k
q ,

x 6=0, xi=1

[

Pr
{

rTx = 0
}]kγR

.

The Hamming weight of a vector over Fq equals the number of

its non-zero elements and is denoted ‖·‖. Now, the probability

Pr
{

rTx = 0
}

is determined, conditioned on ‖r‖ = d and

‖x‖ = w. A row r has weight ‖r‖ = d with probability Ωd and

there are
(

k

w

)

(q − 1)
w−1

choices of x of weight w > 0 and a

one as the first non-zero entry. Let v = (v1, v2, . . . , vk)
T with

vj = rjxj , where vj , rj and xj are the jth elements of the

vectors v, r and x, respectively, then

P
[ML] (

��W
)

=
k
∑

w=1

(

k

w

)

(q − 1)w−1

·

[

∑

d

ΩdPr
{

rTx = 0
∣

∣

∣

∣

∣

∣
‖r‖ = d, ‖x‖ = w

}

]kγR

(4)

with

Pr
{

rTx = 0
∣

∣

∣

∣

∣

∣
‖r‖ = d, ‖x‖ = w

}

=

d
∑

l=0

Pr
{

‖v‖ = l

∣

∣

∣
‖r‖ = d, ‖x‖ = w

}

· Pr







k
∑

j=1

vj = 0
∣

∣

∣
‖v‖ = l







. (5)

The probability of occurrence of exactly l non-zero elements

in v is

Pr
{

‖v‖ = l

∣

∣

∣
‖r‖ = d, ‖x‖ = w

}

=

(

w

l

)(

k−w

d−l

)

(

k

d

) . (6)

The last term in (5) is the number N0(l, q) of possibilities that

l non-zero Fq-elements add up to zero, taking the elements’

order into account, divided by the number N(l, q) of all

possibilities to draw l times with replacement from the set of

the q− 1 non-zero Fq-elements taking the order into account:

Pr







k
∑

j=1

vj = 0
∣

∣

∣
‖v‖ = l







=
N0(l, q)

N(l, q)
. (7)

The problem of determining N0(l, q) is equivalent to finding

the number of closed walks of length l in a complete graph

of size q from some fixed but arbitrary vertex back to itself

of which a closed form expression can be found, e.g. in [12]

N0(l, q) =
1

q

[

(q − 1)
l
+ (q − 1) (−1)

l
]

. (8)
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With N(l, q) = (q − 1)l we obtain

Pr







k
∑

j=1

vj = 0
∣

∣

∣
‖v‖ = l







=
1

q

[

1− (1− q)1−l
]

. (9)

Finally, inserting (6) and (9) into (5) and the resulting ex-

pression into (4) gives the explicit variant of the upper bound

in (1). By some simple transformations, the more compact

version (2) can be obtained.

Theorem 2 ([5]). Given an LT code ensemble GR ∼ Ω(ξ)
over Fq, an upper bound on the symbol erasure probability

P [ML]
(

�S
)

after ML decoding is

P
[ML] (

�S
)

=

k
∑

w=1

(

k − 1

w − 1

)

(q − 1)
w−1

·

[

1

q
+

q − 1

q

∑

d

Ωd ·
Kd(w; k)

Kd(0; k)

]kγR

(10)

with the inverse reception code rate γR = 1 + εR ≥ 1.

Proof: The probability P [ML]
(

�S
)

is equal to the proba-

bility that the ith input symbol cannot be determined by ML

decoding for an arbitrary i ∈ {1, 2, . . . , k}

P [ML]
(

�S
)

= Pr
{

∃x ∈ F
k
q \ {0} , xi = a : GRx = 0

}

with arbitrary but fixed a ∈ Fq \ {0}. This is also the

probability that the ith column of matrix GR is linearly

dependent on a non-empty set of columns, which can be upper

bounded by the probability that any possible set of columns

of GR is linearly dependent on column i

P [ML]
(

�S
)

≤ P
[ML] (

�S
)

=
∑

x∈F
k
q ,

xi=a

Pr {GRx = 0} . (11)

The remainder of this proof is along the same lines as the

proof of Theorem 1 with the only difference that in contrast

to the previous derivation, there are
(

k−1
w−1

)

(q − 1)w−1
choices

of x of weight w > 0 with xi = a.

B. Lower Bounds

Lemma 3. Given an LT code ensemble GR ∼ Ω(ξ) over Fq,

the probability that i particular (fixed but arbitrary) input nodes

(INs) are not connected to any of the kγR independent output

nodes (ONs), i.e. the probability that i particular columns of

GR are all-zero columns, is given by

Pr
{

i particular INs not
connected to any ONs

}

=

(

k
∑

d=1

Ωd

(

k−i
d

)

(

k
d

)

)kγR

. (12)

Proof: The probability that i particular input nodes, with

1 ≤ i ≤ k, are not connected to an output node of degree d is

(

k−i
d

)

(

k

d

) , (13)

while the probability that i particular input nodes are not

connected to an output node of arbitrary degree is

k
∑

d=1

Ωd

(

k−i

d

)

(

k
d

) . (14)

Since there are kγR independent output nodes, the probability

that i particular input nodes are not connected to any of them

is given by (12).

The latter derivation is similar to the one in [13] for the

special case i = 1. This case constitutes a lower bound on the

symbol erasure probability and is stated below without proof.

Theorem 4 ([13]). Given an LT code ensemble GR ∼ Ω(ξ)
over Fq , a lower bound on the symbol erasure probability

P [ML]
(

�S
)

after ML decoding is

P [ML]
(

�S
)

= Pr
{

1 particular INs not
connected to any ONs

}

=

(

1−
d̄

k

)kγR

, (15)

where d̄ =
∑k

d=1 dΩd is the average output node degree.

Theorem 5. Given an LT code ensemble GR ∼ Ω(ξ) over Fq,

a lower bound on the word erasure probability P [ML]
(

��W
)

after ML decoding is

P [ML]
(

��W
)

=

k
∑

i=1

(−1)i+1

(

k

i

)

(

k
∑

d=1

Ωd

(

k−i
d

)

(

k

d

)

)kγR

. (16)

Proof: An information word cannot be reconstructed if at

least one input node cannot be recovered. A lower bound on

the word erasure probability P [ML]
(

��W
)

is therefore given

by the probability that there exist input nodes that are not

connected to any of the kγR independent output nodes

P [ML]
(

��W
)

= Pr
{

∃ INs not connected
to any ONs

}

(17)

=

k
∑

j=1

Pr
{

exactly j INs not con-
nected to any ONs

}

(18)

=

k
∑

j=1

Pr {j} , (19)

where in the last line we have used the short-hand notation

Pr {j} := Pr
{

exactly j INs not con-
nected to any ONs

}

.

Although the summands in (18) or (19) are not given explicitly,

they are available implicitly in another expression for (12)

Pr
{

i particular INs not
connected to any ONs

}

=

k
∑

j=i

(

j
i

)

Pr {j}

(

k
i

) . (20)

In the following, the simple identity
∑ν

ς=1(−1)ς+1
(

ν
ς

)

= 1

is used, as well as the fact that
(

ν

ς

)

> 0 if ν, ς ∈ N0 and

0 ≤ ς ≤ ν, and that
(

ν

ς

)

= 0 in all other cases.



IEEE Communications Letters, vol. 9, no. 17, pp. 1826 – 1829, Sept. 2013, DOI: 10.1109/LCOMM.2013.072313.131212 4 / 4

4

Multiplying (20) by (−1)i+1
(

k
i

)

and summing over i yields

k
∑

i=1

(−1)i+1

(

k

i

)

Pr
{

i particular INs not
connected to any ONs

}

(21)

=

k
∑

i=1

(−1)i+1
k
∑

j=i

(

j

i

)

Pr {j}

=

k
∑

i=1

k
∑

j=i

(−1)i+1

(

j

i

)

Pr {j}

=

k
∑

i=1

k
∑

j=1

(−1)i+1

(

j

i

)

Pr {j}

=

k
∑

j=1

Pr {j}

k
∑

i=1

(−1)i+1

(

j

i

)

=

k
∑

j=1

Pr {j}

j
∑

i=1

(−1)i+1

(

j

i

)

=
k
∑

j=1

Pr {j} = P [ML]
(

��W
)

.

Finally, inserting (12) into (21) yields (16) and concludes the

assertion.

C. Numerical Evaluation and Comparison with Monte Carlo

Simulations

In Fig. 1 the four bounds are depicted for an exemplary LT

code ensemble, namely the expurgated sparse random linear

fountain ensemble4 [5] over F2 and F64 with the same number

of input bits, i.e. k = 300 and k = 50, respectively, and

average degree d̄ = 10. The respective upper bounds almost

coincide with the included residual erasure rates obtained by

Monte Carlo simulations. Each point marked by a red plus

on the red curves is obtained from solving 2.5 · 107 (F2) and

109 (F64) systems of linear equations, where the matrices are

taken from the just mentioned LT code ensemble.

IV. CONCLUSIONS

LT codes over higher order Galois fields and under ML

decoding have excellent erasure correction properties. For this

setup, we have derived tight upper and lower bounds on the

residual word erasure probability. These bounds, together with

the bounds on the residual symbol erasure probability which

we have proposed in a previous work, now form a complete set

of four bounds facilitating an efficient and accurate analysis

of the erasure correction performance of LT code ensembles.
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