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Abstract—Random linear network coding (RLNC) is a method
to maximise the information flow in a network by forming
random linear combinations over a finite field Fq of the received
information packets at each intermediate node. The network
between one source node and one destination node acts as a linear
map F

n
q → F

N
q , which is represented by the network channel

matrix. The connectivity within the network is assumed to be
given, i.e. it is considered to be fixed but arbitrary and thus, the
incidence matrix of the network is said to be known. The optimal
decoding method is equivalent to solving a consistent system of
linear equations over the respective finite field, e.g. by means
of Gaussian elimination. Therefore, decoding is only successful
if the respective square or tall network channel matrix has full
column rank. Since the incidence matrix of the network is given,
there is one degree of randomness less compared to the usual
notion of random matrices. By exploiting similarities of RLNC
with Luby transform (LT) coding, a method to establish rateless
erasure resilience, which is also based on random matrices over
finite fields, we derive an upper bound on the outage probability
for RLNC with known incidence matrices.

I. INTRODUCTION AND SYSTEM MODEL

Network coding [1] is a promising strategy for information

dissemination over packet-switched networks, which enables

to achieve the network capacity. In contrast to routing, where

intermediate nodes in a network just copy and retransmit their

incoming messages, intermediate nodes in a network with net-

work coding transmit functions of their incoming packets. The

latter allows for a more efficient network usage. Particularly in

linear network coding [2], intermediate nodes compute linear

combinations of their incoming packets with factors from

some finite field Fq of size q. Thus, the n packets (or symbols)

sent by the source node S are linearly transformed en route to

the destination node D and the communication network can

be abstracted to a linear map F
n
q → F

N
q which is described

by the so-called network channel matrix1A = [ai,j ] ∈ F
N×n
q .

This work has been supported in part by the UMIC Research Centre, RWTH
Aachen University and by the German Research Foundation (DFG) within the
framework COIN under grants HU 634/11-3 and FI 982/4-3.

1We use the following notation: scalars are written in italic type (e.g. x).
Boldfaced lower case letters denote column vectors (e.g. x), while boldfaced
capital letters denote matrices (e.g. X). The corresponding random variables
are set in sans serif font, e.g. x for random variables, x for random vectors
and X for random matrices. In case of matrices, the product symbol denotes

multiplication from the left, e.g.
∏

3
i=1

Xi = X3X2X1.

The input-output relation of the considered scenario is referred

to as the multiplicative matrix channel (MMC) [3]

y = Ax, (1)

where the n transmit symbols and N receive symbols form the

transmit vector x = (x0, . . . , xn−1)
T
∈ F

n
q and the receive

vector y = (y0, . . . , yN−1)
T

∈ F
N
q , respectively. This is

illustrated in Fig. 1 by means of a unicast linear network

coding scenario which will be used as an example throughout

this paper. The linear factors at each intermediate node are

denoted local encoding vector or local encoding kernel [4].

In order to recover the data x from the receive vector y, the

above consistent system of linear equations (1) needs to be

solved by means of Gaussian elimination or an equivalent yet

computationally more efficient algorithm (cf. e.g. [5]–[9]).

Moreover, to fully recover the original data x, the network

channel matrix needs to have full column rank, i.e. rank n.

Currently, there exist two methods to create proper encod-

ing kernels: deterministic network coding and random linear

network coding [10]. In deterministic network coding the local

encoding kernels are carefully chosen (with the aid of specific

offline algorithms, cf. e.g. [11]), so that the network channel

matrix has full column rank, i.e. such that the destination

node can recover the information sent by the source node. The

main drawbacks of such approaches are a high computational

complexity (the local kernels for all intermediate network

nodes have to be computed) and that some form of cooperation

between the nodes is needed. In this paper we assume that

intermediate nodes are not able to cooperate.

Random linear network coding (RLNC) overcomes these

issues. The conventional prerequisite is that the considered

network is sufficiently dense and therefore can be modeled by

a dense random network channel matrix A whose entries are

i.i.d. and equiprobably sampled from Fq . A so created random

matrix is also refered to as standard random ensemble. Due to

the randomness of this approach, however, it is not guaranteed

that the matrix A has full column rank. The outage probability

Pout = Pr {rank (A) < n} (2)

for RLNC in such usually examined networks, i.e. networks

which are described by a dense network channel matrix or



10th International ITG Conference on Systems, Communications and Coding, February 2015, Hamburg, Germany 2 / 6

S

D

. . .

. . .n

N

Communication

Network
, y = Ax

x0 x1 xn−1

y0
y1

yN−1

Fig. 1. Unicast linear network coding scenario.

more specifically a matrix A whose entries are i.i.d. and

equiprobably sampled from Fq , is well known (cf. e.g. [12])

Pout = 1−

N
∏

i=N−n+1

(1− q−i). (3)

However, the “dense network assumption” is not always valid

and the structure of a network is usually not taken into account,

though both structure and density have a significant influence

on the outage probability.

A. Layered Networks

An arbitrary acyclic network can be transformed into an

equivalent layered network by introducing additional redun-

dant single-input, single-output nodes. The end-to-end random

network channel matrix A ∈ F
nL×n0
q , with n0 = n and

nL = N , can then be obtained as the product of all L interlayer

random matrices Al→l+1 ∈ F
nl+1×nl
q in a layered network as

depicted in Fig. 2, i.e.

A =
L−1
∏

l=0

Al→l+1, (4)

where an interlayer matrix Al→l+1 represents the linear trans-

formation between layer l and layer l + 1 of intermediate

nodes, with 0 ≤ l ≤ L− 1. Accordingly, the total number of

intermediate layers is L + 1 and the number of intermediate

nodes in layer l is nl. The entries in the local encoding

kernels of the interlayer matrices are chosen independently

and uniformly at random from the set of non-zero Galois

field elements Fq \ {0}, since it is assumed that intermediate

nodes act locally and are not able to cooperate with each

other. This proposed layering technique does not change the

outage probability of the overall network, but it enables the

factorisation of the end-to-end network channel matrix A in

(4) and thus marks a pivotal step towards a more structured,

rigorous and general analysis of RLNC which is also valid for

sparse networks.

The paper is organised as follows: in Section II we explain

how a dense overall random network channel matrix A may
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Fig. 2. Unicast scenario with random linear network coding, where the
random network channel matrix A corresponds to the product of multiple
interlayer random matrices Al→l+1, i.e. the network is represented by an
equivalent layered structure.

arise in RLNC even if the interlayer matrices are not dense and

give reasons why one should be careful in analysing such an

RLNC system in the conventional way by using (3). We further

examine networks with two layers of intermediate nodes of

which the network topology is assumed to be known, i.e. the

incidence matrix M of the network graph is fixed but arbitrary:

M = [mi,j ], where mi,j =

{

1 if ai,j 6= 0

0 if ai,j = 0.
(5)

Finally, in Section III an upper bound on the outage probability

of two-layer networks with known incidence matrices is de-

rived, supported by a numerical evaluation as well as Monte

Carlo simulations. For the derivation we adopt methods as

applied for instance in [13], [14]. The obtained upper bound is

particularly suited to analyse network topologies which result

in a sparse network channel matrix.

II. RANDOM LINEAR NETWORK CODING

– A DENSITY ANALYSIS –

The conventional approach to analyse RLNC is based on the

assumption that the end-to-end network channel matrix A is

a random matrix with i.i.d. entries uniformly chosen from Fq ,

i.e. that A is a dense random matrix with Pr {ai,j 6= 0} =
1 − 1/q. However, this assumption is only justified if the

following conditions are met: the considered network is highly

meshed, i.e. the interlayer matrices are not too sparse, and its

equivalent layered representation consists of more than two

layers of intermediate nodes, i.e. it is represented by more

than one interlayer matrix.

The sparser the interlayer matrices, the more layers are

required to obtain a dense end-to-end network channel ma-

trix A. This can be explained by examining the probability

that a fixed but arbitrary entry in the product of two interlayer
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matrices equals zero or equivalently that the scalar product of

two random vectors is zero.

Lemma 1. The probability that the scalar product of two

independent random vectors a ∈ F
n
q and b ∈ F

n
q with given

Hamming weight distributions is zero is equal to

Pr
{

a
T

b = 0
}

=

n
∑

wa=0

n
∑

wb=0

Pr {‖a‖H = wa}Pr {‖b‖H = wb}

×

n
∑

s=0

(

wa

s

)(

n−wa

wb−s

)

(

n

wb

) ·
1

q

(

1−(1− q)1−s
)

, (6)

where ‖·‖H denotes the Hamming weight of a vector.

Proof: Since the two vectors a ∈ F
n
q and b ∈ F

n
q are

independent, the probability that their scalar product is zero

can be written as

Pr
{

a
T

b = 0
}

=
n
∑

wa=0

n
∑

wb=0

Pr
{

a
T

b = 0
∣

∣

∣
‖a‖H = wa, ‖b‖H = wb

}

× Pr {‖a‖H = wa}Pr {‖b‖H = wb} . (7)

Let v = (v0, v1, . . . , vn−1)
T with vj = ajbj , where vj , aj ,

and bj are the jth elements of the vectors v, a, and b,

respectively, then aTb =
∑n−1

j=0 vj and

Pr
{

a
T

b = 0
∣

∣

∣‖a‖H = wa, ‖b‖H = wb

}

= Pr







n−1
∑

j=0

vj = 0
∣

∣

∣‖a‖H = wa, ‖b‖H = wb







=

n
∑

s=0

Pr
{

‖v‖H = s
∣

∣

∣‖a‖H = wa, ‖b‖H = wb

}

× Pr







n−1
∑

j=0

vj = 0
∣

∣

∣
‖v‖H = s







. (8)

The probability of occurrence of exactly s non-zero elements

in v is

Pr
{

‖v‖H = s
∣

∣

∣
‖a‖H = wa, ‖b‖H = wb

}

=

(

wa

s

)(

n−wa

wb−s

)

(

n

wb

) .

(9)

The last term in (8) corresponds to the number N0(s, q) of

possibilities that s non-zero Fq-elements add up to zero, taking

the elements’ order (i.e. the succession of the elements) into

account, divided by the number N(s, q) of all possibilities

to draw s times with replacement from the set of the q − 1
non-zero Fq-elements again taking the order into account:

Pr







n−1
∑

j=0

vj = 0
∣

∣

∣‖v‖H = s







=
N0(s, q)

N(s, q)
. (10)

The problem of determining N0(s, q) is equivalent to finding

the number of closed walks of length s in a complete graph
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Fig. 3. Evaluation of (6) for two random vectors a and b over F16 of length
n = 50 with expurgated binomial Hamming weight distributions.

of size q from some fixed but arbitrary vertex back to itself

of which a closed form expression can be found, e.g. in [15]

N0(s, q) =
1

q
[(q − 1)

s
+ (q − 1) (−1)

s
] . (11)

With N(s, q) = (q − 1)
s

the expression in (10) results in

Pr







n−1
∑

j=0

vj = 0
∣

∣

∣ ‖v‖H = s







=
1

q

(

1− (1− q)
1−s
)

. (12)

Finally, inserting (9) and (12) into (8), and the resulting

expression into (7) concludes the assertion.

Eq. (6) is evaluated in Fig. 3 for two random vectors a and

b over F16 of length n = 50, whose Hamming weights wa

and wb each follow an expurgated binomial distribution

Pr {‖a‖H = wa}

=
1

1− (1− pnz,a)n

(

n

wa

)

pwa

nz,a (1− pnz,a)
n−wa , (13)

with wa = 1, . . . , n. The distribution of ‖b‖H is defined

analogously. Here, the term “expurgated” means that the

probability of occurrence of an all-zero vector is forced to zero.

The parameters pnz,a and pnz,a then denote the probabilities

that a fixed but arbitrary entry in a or b is equal to a non-zero

Fq-element before expurgation. Despite the expurgation, these

two parameters are approximately equal to the density of the

vectors, i.e. the expected relative number of non-zero entries.

In Fig. 3 it can be observed that Pr
{

aTb = 0
}

approaches

1/q already for medium densities of the two vectors a and

b. The results also imply that a matrix that is obtained as

the product of two sparse matrices is much denser than either

of them. Furthermore, one can conclude that multiplying a

few (sparse) random matrices results in a product matrix

whose density approaches 1−1/q, while the multiplication of

many (sparse) random matrices yields a product matrix whose

density equals 1 − 1/q almost surely. While this result may
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not be surprising, it is now possible to quantify the density of

the product matrix by means of Lemma 1.

Although the prerequisite for the conventional RLNC anal-

ysis of a dense overall matrix is oftentimes fulfilled, it does

not immediately follow that the outage probability may be

computed via the conventional approach in (3). Note that in a

network with more than two layers, the overall outage proba-

bility is lower bounded by the product of the interlayer outage

probabilities. This fact is usually overlooked in conventional

RLNC analysis.

In contrast to dense network channel matrices, where each

element from Fq occurs with equal probability, sparse channel

matrices are biased w.r.t. the zero element. We speak of a

sparse matrix if Pr {ai,j = 0} ≫ 1/q. A sparse network

channel matrix arises if the network consists of only very few

layers and if the interlayer matrices are sparse, too.

A. Two-Layer Networks with Known Incidence Matrices

In the extreme case of only two layers, i.e. only one inter-

layer matrix, a very accurate analysis of the outage probability

is possible. Particularly if the incidence matrix M is known.

Two examples for the described case are depicted in Fig. 4.

Intermediate nodes in the first and in the second layer are

denoted I0,i and I1,i, respectively. The resulting network

channel matrices Aa ∈ F
4×4
q and Ab ∈ F

6×4
q are

Aa =









a0,0 a0,1 0 0
a1,0 a1,1 a1,2 0
0 0 a2,2 a2,3

0 0 a3,2 a3,3









, (14)

Ab =

















a0,0 a0,1 0 0
a1,0 a1,1 0 0
a2,0 a2,1 a2,2 0
0 0 a3,2 a3,3

0 0 a4,2 a4,3

0 0 0 a5,3

















. (15)

In this two-layer setting the matrix element ai,j corresponds

to the weight of the edge (I0,j → I1,i). These weights are

drawn uniformly at random from Fq \ {0}.

III. OUTAGE PROBABILITY OF RANDOM MATRICES WITH

KNOWN INCIDENCE MATRICES

For such sparse network channel matrices as given above

the outage probability is not equal to the expression in (3).

Moreover, an analytic expression of the outage probability

for such matrices is not known. Therefore, we derive an

upper bound on the outage probability Pout which is valid

for arbitrary random matrices over finite fields with a known

incidence matrix and particularly for sparse matrices. In the

derivation we adopt a method from [13], [14].
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Fig. 4. Two examples of sparsely meshed networks with (n, N) = (4, 4)
and (n, N) = (4, 6) whose network channel matrices are given in (14) and
(15), respectively.

A. Derivation of an Upper Bound on the Outage Probability

Network channel matrices A ∈ F
N×n
q of sparsely meshed,

two-layer networks are random matrices with entries ai,j . At

known positions some entries are a priori set to zero, while all

others are chosen uniformly at random from Fq \{0}, cf. (14)

and (15). In other words, the incidence matrices M ∈ F
N×n
2 ,

cf. (5), are known.

Theorem 1. An upper bound P out on the outage probability

of a network channel matrix A ∈ F
N×n
q with known incidence

matrix M is given by (29) on the last page.

Proof: The outage probability Pout is the probability of

A not having full column rank n

Pout = Pr {rank (A) < n} , (16)

which is equivalent to the probability that the cardinality (i.e.

the finite number of elements, as spaces over Fq contain a finite

number of elements) of the non-trivial kernel is non-zero

Pout = Pr {|ker (A) \ {0}| ≥ 1} . (17)
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This can further be upper bounded as follows

Pout =
∑

j≥1

Pr {|ker (A) \ {0}| = j} (18)

≤
∑

j≥0

j · Pr {|ker (A) \ {0}| = j} . (19)

Since (19) corresponds to the expected cardinality of the non-

trivial kernel of A, the probability Pout can be upper bounded

accordingly

Pout ≤ E {|ker (A) \ {0}|} . (20)

However, this bound can be tightened by a factor of q− 1 by

exploiting the fact that if some x ∈ ker (A) \ {0}, then also

cx ∈ ker (A) \ {0}, ∀c ∈ Fq \ {0}. So, in order to bound the

outage probability from above, it is sufficient to count just one

of the q − 1 scaled versions of x

Pout ≤ P out ··=
1

q − 1
· E {|ker (A) \ {0}|} (21)

and w.l.o.g. this is accomplished by counting only those

vectors x that have been normalised w.r.t. their first non-zero

entry, i.e. vectors x whose first non-zero entry is xi = 1

P out =
1

q − 1

∑

x∈Fn
q \{0}

Pr {Ax = 0} (22)

=
∑

x∈F
n
q ,

xi=1

Pr {Ax = 0} . (23)

To yield Ax = 0, each row aT

i of A, with ai ∈ F
n
q and

0 ≤ i < N − 1, must individually fulfil aT

i x = 0

P out =
1

q − 1

∑

x∈Fn
q \{0}

N−1
∏

i=0

Pr
{

a
T

i x = 0
}

. (24)

Before continuing with the determination of Pr
{

aT

i x = 0
}

,

some quantities need to be defined:

• di denotes the row weight of aT

i , i.e. the number of non-

zero positions in row i of A.

• di1,...,il denotes the number of intersecting non-zero

positions in rows ai1 , . . . ,ail .

• Let vi = (vi,0, vi,1, . . . , vi,n−1)
T

with vi,j = ai,jxj .

• li and li1,...,il denote the row weights of vi and the

number of intersecting non-zero positions in vi1 , . . . ,vil ,

respectively.

• dΣ and lΣ denote the union of non-zero positions in

all rows ai and vi, respectively. Applying the inclusion-

exclusion principle (cf. e.g. [15]), these quantities can be

computed as follows

dΣ = d0 + · · ·+ dN−1 − d0,1 − · · · − dN−2,N−1

+ · · · − · · · ± d0,...,N−1 , (25)

lΣ = l0 + · · ·+ lN−1 − l0,1 − · · · − lN−2,N−1

+ · · · − · · · ± l0,...,N−1 (26)

• dΣ,i denotes the number of non-zero positions that occur

in row aT

i , but not in any other row

dΣ,i = di

− d0,i − · · · − di−1,i − di,i+1 − · · · − di,N−1

+ d0,1,i + · · ·+ d0,i−1,i + d0,i,i+1 + · · ·+ d0,i,N−1

+ d1,2,i + · · ·+ d1,i−1,i + d1,i,i+1 + · · ·+ d1,i,N−1

...

+ di,N−2,N−1

...

± d0,...,i,...,N−1. (27)

• dΣ,i1,...,il denotes the number of joint non-zero positions

that occur only in rows ai1 , . . . ,ail , but not in any other

row

dΣ,i1,...,il = di1,...,il
− d0,i1,...,il − · · · − di1,...,il,N−1

+ d0,1,i1,...,il + · · ·+ d0,i1,...,il,N−1

+ d1,2,i1,...,il + · · ·+ d1,i1,...,il,N−1

...

+ di1,...,il,N−2,N−1

...

± d0,...,i1,...,il,...,N−1 (28)

• lΣ,i and lΣ,i1,...,il can be computed accordingly.

Combining these quantities with (24) we obtain (29). The first

row in (29) contains the summation over the cardinalities of

all possible (joint) support sets of vi as well as the summation

over the weight of x. The term (q−1)w−1 counts the number

of different realisations of x with weight w, excluding non-

trivial multiplicities, given that x has a fixed but arbitrary

support set. This term together with the binomial coefficients

gives the total number of choices of x (excluding non-trivial

multiplicities) which have suitable support sets. The last term

of the first row can be derived by the same reasoning as (12)

in Section II.

B. Simulation Results

In Fig. 5 the simulated outage probabilities of the random

network channel matrices Aa and Ab, corresponding to net-

works (a) and (b) in Fig. 4, are depicted as cross markers in

blue and red, respectively. The corresponding upper bounds

on the outage probabilities according to (29) are depicted as

solid lines. For comparison, the outage probabilities of dense

random matrices of sizes (4× 4) and (6× 4) are determined

according to (3) and are plotted as dashed lines.

From Fig. 5 it is obvious that for sparse network channel

matrices, the outage probabilities can deviate significantly

from the outage probabilities of dense matrices in (3). A good

estimate on the actual outage probability is the introduced

upper bound according to (29). It can be seen that this upper
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P out =

d0
∑

l0=0

· · ·

dN−1
∑

lN−1=0

d0,1
∑

l0,1=0

d0,2
∑

l0,2=0

· · ·

dN−2,N−1
∑

lN−2,N−1=0

· · ·

d0,...,N−1
∑

l0,...,N−1=0

n
∑

w=min(1, lΣ)

(q − 1)w−1

(

N−1
∏

i=0

1

q

[

1− (1− q)1−l
]

)

×

(

N−1
∏

i=0

(

dΣ,i

lΣ,i

)

)





∏

0≤i1<i2≤N−1

(

dΣ,i1,i2

dΣ,i1,i2

)









∏

0≤i1<i2<i3≤N−1

(

dΣ,i1,i2,i3

dΣ,i1,i2,i3

)



 · · ·

(
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)
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Fig. 5. For the two exemplary networks (a) and (b) of size (4 × 4) and
(6× 4), respectively, the simulated outage probabilities (cross markers) and
upper bounds on the outage probability according to (29) (solid lines) are
depicted. For comparison, the outage probabilities according to (3) of the
standard random ensembles of the same sizes are plotted as well.

bound is very tight and nearly coincides with the simulation

points.

IV. CONCLUSION

In this paper we have questioned and discussed the validity

of the conventional random linear network coding approach, in

which the network is modelled as a dense random matrix over

a finite field and where usually the well known expression (3)

is used to assess the outage probability. We have introduced a

layering technique to transform arbitrary acyclic networks into

layered networks which allows a more structured, rigorous and

general analysis of RLNC. We have shown how multiple layers

of sparsely or even densely meshed networks result in a dense

overall network channel matrix and have pointed out that in

such a case the outage probability should not be computed via

the conventional approach.

Particularly for two-layer networks with known incidence

matrices we have derived an upper bound on the outage prob-

ability which proves particularly useful for sparse networks,

whose outage probability usually deviates significantly from

the one of the standard random ensemble. The extension of

the upper bound to networks with more than two layers of

intermediate nodes is currently under investigation.
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