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ABSTRACT

A typical measure taken against unavoidable noise during the measurement of an impulse response of an acoustical
system is to repeat the measurement a couple of times and coherently average the distinct measurements. With stationary
noise this is the optimal solution which gives an improvement of the signal-to-noise ratio of about 3 dB per doubling
of the number of measurements averaged. If transient or time varying noise components are present the resulting
accuracy suffers significantly. In this contribution, the authors propose a weighted averaging approach where the distinct
measurements are weighted according to the present noise power. The noise power is estimated with the so-called SWiC
method (sliding window correlation) recently published by the authors.

INTRODUCTION

The measurement of the impulse response of a time-invariant
acoustical transmission path must often be performed in adverse
noisy environments. The most common solution for improv-
ing the signal-to-noise ratio (SNR) of the measured impulse
response is to repeat the excitation signal periodically and av-
erage the periods of the system response. By this means, the
measurement SNR can be increased by up to 3 dB per doubling
of the number of periods. To achieve the maximum increase
of the SNR the noise signal must be white, stationary, and
statistically independent of the excitation signal.

If these conditions are not met, the overall SNR can decrease
dramatically. Specifically, in the presence of transient noise
components averaging periods with greatly differing SNRs
mostly results in an overall SNR being significantly lower than
the SNR of the "best" period. This effect can render a long
measurement with many periods useless.

In this paper a novel method for performing an impulse re-
sponse measurement over multiple periods is presented which
is robust against fluctuating and transient noise. It makes use
of an algorithm recently published by the authors [7] for esti-
mating the SNR during the measurement. With the knowledge
of an accurate estimate of the noise power it is possible to in-
troduce noise power dependent weighting factors per period
into the averaging process. Such weighting factors are derived
and proved to be the optimum factors in the sense of maximiz-
ing the SNR of the resulting impulse response. The common
averaging approach is contained in the presented method as a
special case when the weighting factors are equal for all periods.
This happens when the noise power is constant throughout the
whole measurement procedure.

First, the method and the excitation signals used throughout this
paper for impulse response measurements are described. Then
important aspects of the theory of coherent averaging are sum-
marized and extended to weighted averaging. The optimality in
terms of maximum SNR of the weighted averaging approach is
proved for the case of perfect knowledge of the noise power in
every period during the measurement. As a good estimate of the

noise power is crucial for the method to be practical the theory
of the proposed noise estimation method is summarized. Fi-
nally, the simulation and measurement setups and the respective
results are presented.

IMPULSE RESPONSE MEASUREMENT

To describe an acoustic system, the impulse response of the
transmission path between the sound source and the sound sink
is of interest. Many measures like decay time and the magnitude
spectrum can be deduced from it. There exist a great variety of
measurement algorithms for determining the characteristics of
an acoustical system.

Frequency domain deconvolution

One of the most widely used flexible and universal methods
which will be used throughout this contribution is the frequency
domain deconvolution. For a single shot measurement the ex-
citation signal is emitted once and the response is recorded
for at least the duration of the expected length of the system
impulse response. The excitation and response signals are then
transformed into the frequency domain. The response spectrum
is divided by the excitation spectrum and finally transformed
back into the time domain. In a noise free system this results in
the impulse response of the system under test. This is depicted
in Figure 1.
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Figure 1: Impulse response measurement by frequency
domain deconvolution.

To lower the impact of noise by means of coherent averaging,
the single shot measurement can be repeated a couple of times.
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The resulting impulse responses (or the measurement signals)
are then averaged. If the excitation signal is at least as long
as the expected impulse response the excitation signal can be
emitted multiple times without a pause in between. After that,
the system response is split into parts with the length of one
period of the excitation. The first part is dropped, because here
the system is not yet in a steady state. The remaining parts can
be averaged over time, as will be discussed below.

Excitation signal

For a general purpose impulse response measurement without
knowledge of the system under test, a broadband excitation
signal has to be chosen, i.e., it should have significant energy
at all frequencies. This is especially true if a deconvolution
approach is used for system identification as otherwise the
needed inverse signal does not exist or the approximation leads
to large errors in the resulting impulse response.

For this contribution we evaluated the presented algorithms with
many different excitation signals ranging from maximum-length
sequences [5] over perfect sequences [3] to sweeps (logarithmic,
linear [2, 4] and “perfect” [6]). As the results do not depend
significantly on the actual excitation signal only the simulation
and measurement results for perfect sweeps are shown.

Perfect Sweep

Perfect sweeps [6] are linear sweeps with a perfectly constant
magnitude spectrum. They are constructed in the frequency
domain by setting the magnitude to a constant and constructing
the phase so that its absolute value increases quadratically. Thus,
the perfect sweep has linear group delay τG( f )

τG( f ) = τG(0)+ f · τG( fg)− τG(0)
fg

(1)

with fg being the upper frequency bound of the sweep and f
the frequency in the range 0≤ f ≤ fg. For the phase Φ( f ) this
yields

Φ( f ) =−
f∫

0

τG(ζ )dζ (2)

=−
(

f · τG(0)+
1
2

f 2 · τG( fg)− τG(0)
fg

)
. (3)

Finally the constructed spectrum is transformed into the time
domain.

In contrast to traditional sweep construction no countermea-
sures are needed to reduce temporal aliasing as it guarantees
a smooth transition between successive periods when emitted
periodically. In combination with the perfectly flat spectrum
this is especially advantageous for the measurement of time
variant systems. For the measurement of a static system, per-
fect sweeps have almost the same properties as normal linear
sweeps.

COHERENT AVERAGING

Every impulse response measurement suffers from noise in
one or the other way. Typically the microphones and the A/D-
converters contribute to measurement noise. Additionally, there
is normally some unavoidable background noise present at the
location of the measurement. As long as such noise is stationary
and statistically independent of the excitation signal and the sys-
tem under test is sufficiently static, one can reduce its influence
by emitting the excitation signal periodically and coherently
averaging successive periods of the measured signal.

Let N be the period length, y(n) the noiseless system response
to the excitation signal x(n), r(n) the noise signal and ỹ(n) =
y(n)+ r(n) the noisy system response. When the excitation

signal is periodic, the noiseless system response of a linear
time-invariant system must also be periodic

y(n) = y(n−N). (4)

For the noisy system response we get

ỹ(n) = y(n)+ r(n) (5)
ỹ(n−N) = y(n)+ r(n−N). (6)

With unweighted averaging of the distinct periods of the noisy
system response ỹ(n) the averaged system response y(n) of
length N is then given by

y(n) =
1
M

M−1

∑
i=0

ỹ(n+ iM) (7)

=
1
M

M−1

∑
i=0

y(n+ iM)+ r(n+ iM) (8)

=
1
M

M−1

∑
i=0

y(n)+ r(n+ iM) (9)

= y(n)+
1
M

M−1

∑
i=0

r(n+ iM) (10)

with 0≤ n < N and M the number of periods to average.

This means, that the energy of the clean system response being
part of the noisy system response is not altered. The noise
component is represented by the sum of the noise segments
divided by the number of averaged periods.

Now let the noise signal r(n) be an ergodic random signal
where all the segments of length N are independent of each
other. With N→ ∞ the power in the sum of the noise segments
equals the power in one noise segment multiplied by the number
of segments. With the scaling factor 1/M from the averaging
operation the overall noise power Ψa in the averaged noisy
system response results in

Ψa =
1
M

Ψ (11)

with

Ψ = lim
N→∞

1
N

N−1

∑
k=0

r(k). (12)

Thus, with an ergodic noise signal, i.e., an equal noise power in
all noise segments, the noise power can be lowered by a factor
of 1

M . This is the well known rule of 3 dB gain in SNR per
doubling the number of averaging periods.

WEIGHTED COHERENT AVERAGING

If the noise power fluctuates over time, the unweighted aver-
aging is suboptimal, though. The SNR can even degrade dra-
matically if the noise power in the averaged periods differs
significantly. To model changing noise power lets assume that
the noise in each of the M periods has its source in a different
ergodic noise process ri(n) with distinct constant power Ψi with
0≤ i < M. Introducing the weights ci into (7) yields

yw(n) =
M−1

∑
i=0

ciy(n)+ cir(n+ iM) (13)
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The weights are constrained by

M−1

∑
i=0

ci = 1. (14)

so that the weighted average yw(n) becomes

yw(n) = y(n)+
M−1

∑
i=0

cir(n+ iM). (15)

The power Ψw of the weighted sum of the distinct noise signals
ri(n) with the weights ci yields

Ψw = lim
N→∞

1
N

N−1

∑
k=0

(
M−1

∑
i=0

ciri(k)

)2

=
M−1

∑
i=0

c2
i Ψi. (16)

The goal is to find weights ci that minimize the power of the
summed noise signal

Ψw =
M−1

∑
i=0

c2
i Ψi→min . (17)

This results in a constrained optimization problem which can
be solved by means of the method of Lagrange multipliers [1].
The Lagrangian Λ is given by

Λ(c0, . . . ,cM−1,λ ) =
M−1

∑
i=0

c2
i Ψi +λ

(
1−

M−1

∑
k=0

ck

)
(18)

with the partial derivatives

∂Λ(c0, . . . ,cM−1,λ )

∂ci
= 2ciΨi−λ with 0≤ i < M (19)

and

∂Λ(c0, . . . ,cM−1,λ )

∂λ
= 1−

M−1

∑
i=0

ci (20)

Setting the partial derivatives to zero yields the system of equa-
tions:

ci =
λ

2Ψi
with 0≤ i < M (21)

M−1

∑
i=0

ci = 1 (22)

Substituting (21) into (22) and solving the equation for λ results
in

λ =
2

M−1
∑

i=0

1
Ψi

(23)

For the weights ci this gives

ci =
1

Ψi
M−1
∑

k=0

1
Ψk

with 0≤ i < M (24)

Substituting (24) into (16) gives the closed form for the resulting
averaged noise power

Ψw =
M−1

∑
i=0

 1

Ψi
M−1
∑

k=0

1
Ψk


2

Ψi (25)

=
M−1

∑
i=0

1

Ψi

(
M−1
∑

k=0

1
Ψk

)2 (26)

=
M−1

∑
i=0

1

Ψi


M−1
∑

k=0

M−1
∏

m=0,m6=k
Ψm

M−1
∏

k=0
Ψk


2 (27)

=
1(

M−1
∑

i=0

M−1
∏

k=0,k 6=i
Ψk

)2

M−1

∑
i=0

(
M−1
∏

k=0
Ψk

)2

Ψi
(28)

=

M−1
∏
i=0

Ψi(
M−1
∑

i=0

M−1
∏

k=0,k 6=i
Ψk

)2

M−1

∑
i=0

M−1

∏
k=0,k 6=i

Ψk (29)

=

M−1
∏
i=0

Ψi

M−1
∑

i=0

M−1
∏

k=0,k 6=i
Ψk

(30)

Because the second partial derivatives of (18)

∂ 2Λ(c0, . . . ,cM−1,λ )

∂c2
i

= 2Ψi with 0≤ i < M (31)

and

∂ 2Λ(c0, . . . ,cM−1,λ )

∂λ 2 = 0 (32)

are all greater or equal to zero, the previously found extremum
really is an absolute minimum. Thus, the weighted sum (16)
with the weights (24) results in the minimally achievable noise
power.

NOISE POWER ESTIMATION

To actually perform the optimal weighted averaging, the noise
power in the distinct periods has to be estimated as the actual
noise signal is not known. The noise power estimation method
recently published by the authors [7] is designed for measure-
ment setups with periodically repeated excitation signal. It is
used for noise power estimation in this paper and hence will be
sketched in the following.

In order to derive a method for estimating the noise power we
recall the properties (5) and (6) of the noisy system response
ỹ(n)

ỹ(n) = y(n)+ r(n)
ỹ(n−N) = y(n)+ r(n−N).

and define a signal e(n) with

e(n) = ỹ(n)− ỹ(n−N) (33)
= r(n)− r(n−N). (34)
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Now consider the expectation of the product of e(n) and the
N-shifted version of it e(n+N)

E{e(n) · e(n+N)}=
= E{(r(n)− r(n−N)) · (r(n+N)− r(n))}
=−E{r2(n)}+E{r(n) · r(n+N)}
+E{r(n) · r(n−N)}
−E{r(n+N) · r(n−N)}.

(35)

For a stationary white noise signal all terms but the first become
zero and we get

E{e(n) · e(n+N)}=−E{r2(n)} (36)

This relation shows, that the autocorrelation of the signal e(n)
at shift N is equal to the negated power of the noise signal
r(n). Thus, the power Ψi of period i of the noise signal can be
approximated by

Ψi ≈−c(N,N)
e (i ·N) (37)

=− 1
N

N−1

∑
k=0

e(i ·N + k) · e(i ·N + k+N).

where c(W,D)
x (n) is the so called SWiC (sliding window correla-

tion) of the signal x with window length W and displacement D
(see [7]).

SIMULATION

For evaluating the presented method for weighted averaging,
simulations as well as real measurements were performed. In
this section the simulation setup and results will be presented.
The next section will deal with the real measurements.

The system impulse response of the simulated system, which is
shown in Figure 2, was constructed from random white Gaus-
sian noise with a length of N = 10000 samples fading out ex-
ponentially and normalized to have a power of one. Different
excitation signals were used: a maximum length sequence, a
logarithmic sweep, and a sweep with a perfectly flat spectrum,
a so-called perfect sweep ([6]). As mentioned earlier only the
results using the perfect sweep are presented.

The excitation signal was repeated M = 17 times and filtered
with the system impulse response. Then a noise signal was
added. To simulate ambient stationary noise random white gaus-
sian noise with a power of -40 dB was added. For transient
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Figure 2: System impulse response for the simulation.
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Figure 3: Real and estimated noise power.

2 4 6 8 10 12 14 16
−50

−40

−30

−20

−10

Number of periods averaged

Sy
st

em
di

st
an

ce
/d

B
Unweighted
Weighted (real)
Weighted (SWiC)

Figure 4: Comparison of different averaging approaches
by means of system distance between the real impulse
response and the estimated impulse response averaged
over an increasing number of periods.

noise, short bursts of random white Gaussian noise with in-
creased power were added. Figure 3 shows the real and the
estimated power of the noise signal.

The estimated impulse responses were determined for every
period by frequency domain deconvolution as described earlier
in this paper. Because the system is not yet stabilized in the first
excitation period, that period was dropped. For normal aver-
aging the impulse responses were summed and divided by the
number of impulse responses used for averaging. For weighted
averaging the impulse responses were weighted according to the
real and the estimated noise power present in the corresponding
period of the noisy system response.

In order to see the impact of transient noise, the averaged im-
pulse responses were calculated for the averaging of 1, 2, 3, and
so on periods.

Simulation results

The performance of the weighting algorithms was measured by
means of the system distance D between the estimated impulse
response h̃(n) and the real impulse response h(n)

D =

N−1
∑

k=0

(
h(k)− h̃(k)

)2

N−1
∑

k=0
h2(k)

. (38)

4 ICA 2010



Proceedings of 20th International Congress on Acoustics, ICA 2010 23–27 August 2010, Sydney, Australia

Figure 4 shows the results of normal averaging and weighted
averaging with the real noise power and with the estimated
noise power used to calculate the weights.

MEASUREMENT

To evaluate the benefits of the proposed averaging method in
practice, a set of real measurements were performed. The acous-
tical transfer path to be measured was from a loudspeaker in a
dummy head’s mouth to a microphone located near the ear of
the dummy head. The acoustical components were connected to
professional A/D- and D/A-converters (manufactured by RME).
The environment was a normal office with typical background
noise (e.g., computer fans and hard disk drive). Transient noise
was produced by dropping a ruler and knocking at the door.

The excitation signal types and methods for calculating the
system impulse response were the same as in the simulation
setup described above. The length of one period of the excitation
signals was approximately 4 seconds at a sample rate of 48 kHz.
The number of periods was 16. For each excitation signal a
set of two measurements was performed. First the noise level
was kept as low as possible to get a reference measurement
for calculating a reference impulse response by averaging over
periods 2 through 16. During the second measurement transient
noises were produced as described above.

Measurement results

Like in the simulation setup the averaging results for the differ-
ent excitation signals are quite similar. Thus, only the results
for the perfect sweep are presented here.

Figure 5 shows the noise power during the measurement es-
timated by means of the SWiC. The true noise power is not
known. The measurements are evaluated in the same way as the
simulation results only that instead of the true impulse response,
which is not known, the reference impulse response is used.
The resulting system distances are shown in Figure 6.

CONCLUSIONS

The simulations as well as the measurement results show clearly,
that weighted averaging is by far superior to unweighted av-
eraging in terms of achievable system distance. In the case of
stationary background noise the weights are set to be all equal,
i.e., the traditional averaging is included as a special case.

If the noise has transient components with high power, the
traditional averaging fails. The transient components render
the resulting impulse responses nearly useless. By weighting
the distinct periods so that periods with high noise power have
less impact, the resulting impulse responses can be improved
significantly.

To achieve a superior SNR in the resulting system impulse
response, a precise estimate of the noise power is needed. The
noise estimation method based on the SWiC (Sliding window
correlation) follows the real noise power quite closely and thus
is well suited for the weighted averaging approach. Compared
to the results with the real noise power the system distance
degrades only slightly.

Thus, the weighted averaging method proposed in this paper
makes it possible to retrieve high quality impulse responses
with high SNR even in changing noise conditions.
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Figure 5: Estimated (SWiC) noise power during real mea-
surement.
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Figure 6: System distance to reference impulse response
for unweighted and weighted averaging for an increasing
number of periods averaged.
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