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ABSTRACT

In digital mobile communications several measures are taken be-
yond speech coding to enhance the perceived quality in the presence
of acoustic background noise and transmission errors. In premium
mobile phones meanwhile advanced algorithms for noise suppres-
sion, error concealment, and finally artificial bandwidth extension
come to practical application. It will be shown in this contribution
that theses three different concepts of speech enhancement are actu-
ally based on the same common principle of conditional estimation,
taking statistical a priori knowledge into account. Recent develop-
ments in these three areas are presented.

1. INTRODUCTION

In digital cellular radio systems using state of the art speech encod-
ing, the speech quality suffers mainly from three different sources
of degradation:
� acoustical background noise
� bandpass limitation of the speech signal to the

telephone frequency band: 0 � 3 ����� 3 � 4 kHz
� residual bit errors after channel decoding.

These degradations can be combated by three independent coun-
termeasures which have been evolved independently and will be
subsumed here under the generic term speech enhancement.

Fig. 1 shows a block diagram of the typical speech communi-
cation system. A microphone captures the speech disturbed by
acoustical background noise. The samples y � s

�
n are obtained by

using a telephone bandpass (0 � 3 ����� 3 � 4 kHz) and an A/D-converter
running at a sampling frequency of fs � 8 kHz.

Noise Reduction (NR) is the first stage of enhancement which de-
livers a signal ŝ with a reduced background noise level to the speech
encoder. Noise reduction requires
� the knowledge of the noisy signal y � k � and
� statistical a priori knowledge about speech and noise.
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Figure 1: Speech communication system.

We assume that a state of the art speech encoder such as the GSM
Enhanced Full Rate Codec (GSM-EFR) is used and that thus the
level of the coding distortions is acceptable low. The samples ŝ
are transformed frame by frame into parameters v by the model
based speech encoder. The parameters v are represented by vectors� of bits x. The transmission over the noisy channel is described
by the so-called equivalent channel which includes modulation
and demodulation as well as inner channel encoding and channel
decoding. In adverse transmission conditions, residual bit errors
may remain after channel decoding. Therefore, error concealment
is required to reduce the resulting subjectively annoying effects.

Error Concealment (EC), the second stage of enhancement, is
based on
� the decoded and possibly disturbed bits x̂,
� bit-reliability information and
� a priori knowledge about parameters v.

The channel decoder delivers for groups �� of bits or even for indi-
vidual bits x̂ a reliability measure, the Decoder Reliability Indicator
(DRI). The error concealment stage delivers estimated parameters v̂
which are applied to the model based speech decoder.

Finally the decoded signal s̃ is applied to the third stage of speech
enhancement, which performs the artificial extension of narrow-
band telephone quality (0 � 3 �	��� 3 � 4 kHz) to wideband telephone
quality (0 � 05 ���	� 7 � 0 kHz). This step is of special interest as soon
as network operators introduce true wideband speech coding [1]
into the networks. For a long transition period narrowband and
wideband speech terminals will coexist. In case of a sending
narrowband terminal, the speech quality at the receiving end can be
improved by artificial bandwidth extension.

Bandwidth Extension (BWE), the third stage of enhancement
needs
� speech signal s̃ degraded (at least by) by telephone bandpass

filtering
� a priori knowledge about the spectral envelope of wideband

speech.
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We will see, that the speech enhancement blocks NR, EC,
and BWE of Fig. 1 are based on the same common principle of
conditional estimation of signal parameters using statistical a priori
knowledge.

The paper is organized as follows: In Section 2, the task of condi-
tional estimation is introduced in a general form. In Section 3, the
technique of single microphone noise reduction (NR) is addressed.
Here, the conditional estimation is performed in the discrete Fourier
domain independently for each frequency bin. In Section 4, the
issue of error concealment (EC) by softbit source decoding is pre-
sented which is performed in the domain of the speech codec param-
eters, using a priori knowledge on parameter level. Finally, in Sec-
tion 5, an algorithm for bandwidth extension (BWE) is described,
which applies a state model of speech to conditionally estimate the
wideband spectral envelope.

2. CONDITIONAL ESTIMATION

In this section, the procedure of conditional estimation is introduced
in general terms. The speech enhancement algorithms, to be de-
scribed later, are based on conditional estimation of speech param-
eters such as DFT-coefficients or predictor coefficients.
In Fig. 2 two different setups are illustrated.
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Figure 2: Conditional estimation in a parameter domain using a
priori knowledge
a) signal disturbance
b) parameter disturbance

In both cases of this theoretical model, parameters a of the orig-
inal signal s are obtained by a first analysis procedure A. In prac-
tice, the parameters a are not accessible, but instead of this we have
disturbed/degraded observations b, which are gained by a second
analysis procedure B. The analysis algorithms A and B must not
necessarily be the same. The difference between the two situations
consists in the place, where the disturbance is introduced: either on
the signal level (Fig. 2a) or on the parameter level (Fig. 2b).

The task of the conditional estimator is then to form an estimate â
for each individual parameter a by using the disturbed observation
b, a priori knowledge in terms of the statistics of a (discrete
probabilities P � a � or probability density functions (PDFs) p � a � )
and even statistical knowledge about the disturbance/degradation

in terms of transition probabilities P � b � a � or conditional PDFs
p � b � a � . If information about a has been lost due to the disturbance,
the original value can not be reconstructed without errors. Thus,
the estimation relies on finding the best possible estimate â in a
statistical sense, i.e., such that the average estimation error should
be minimized. For this purpose the “a posteriori“ probability
density function p � a � b � of the original value a conditioned on the
instantaneous observation b is exploited.
A cost function C � a � â � is introduced [2], which assigns a value to
each combination of undisturbed a and estimated â signal and thus
weights the estimation error for each given (a, â).

An estimation rule â � f � b � , which minimizes the expectation of
the cost function, is asked for. The average costs or expectation of
C � a � â � can be formulated by integration over the joint PDF of the
undisturbed and disturbed value

ρ0 � E � C � a � â ��� �
∞�� ∞

∞�� ∞

C � a � â ��� p � a � b � da db � (1)

The estimation rule â � f � b � can be found by minimizing ρ0. After
applying Bayes’ theorem, equation (1) can be converted as follows:

ρ0 �
∞�� ∞

	

∞�� ∞

C � a � â ��� p � a � b � da �� p � b � db � (2)

As p � b � is non-negative the minimum of ρ0 can be found by mini-
mizing the inner integral for every possible observation b [2].

ρ1 � E � C � a � â �
� b � �
∞�� ∞

C � a � â ��� p � a � b � da � (3)

2.1 Conditional Minimum Mean Square Error Estimation

Choosing a square cost function, i.e., C � a � â � � � a � â � 2, minimiza-
tion of the inner integral of (2) w.r.t. â

d
dâ

��
∞�� ∞

� a � â � 2 � p � a � b � da �� ��� ∞�� ∞

2 � a � â ��� p � a � b � da
!� 0 (4)

leads with
∞�� ∞

p � a � b � da � 1 to the minimum mean square error

(MMSE) or conditional mean estimator:

â � E � a � b � �
∞�� ∞

a � p � a � b � da � (5)

The a posteriori probability density p � a � b � is unknown, but by using
Bayes theorem once more, (5) can be rewritten as

â �

∞�� ∞
a � p � b � a ��� p � a � da

p � b � �

∞�� ∞
a � p � b � a ��� p � a � da

∞�� ∞
p � b � a ��� p � a � da

� (6)

Both (5) and (6) can be derived as well for discrete probabilities, if
a and b take discrete values (e.g. due to quantization). The integrals
have to be replaced by summations and the PDFs by probabilities.
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Even a mixed form is possible where the statistics of only one quan-
tity is discrete. In this case we need the ”mixed form” of the Bayes’
theorem.

Equation (5) is the theoretical solution, whereas (6) leads to the
real implementation. Under certain constraints, which are fulfilled
in the noise reduction application, closed analytical solutions of (6)
can be derived (see Section 3).

2.2 Conditional Maximum a Posteriori Estimation

Another useful function to weight the estimation error for (2) is the
uniform cost

C ��� 0 ; � a � â ��� ε
1 ; else

� (7)

To minimize the integral of (3) with this cost function the maximum
of p � a � b � must be in the area where C � 0. Thus the estimate â
is obtained as the maximum of the a posteriori probability density
function.

â � argmax
a

p � a � b � � (8)

which can also be reformulated via Bayes rule towards

â � argmax
a

p � b � a � � p � a �
p � b � � (9)

If the a posteriori probability density is symmetric and unimodal the
MMSE estimate equals the maximum a posteriori (MAP) estimate
(see e.g. [3]).

3. NOISE REDUCTION (NR)

As a first application of conditional estimation, the concept of sin-
gle microphone noise suppression by spectral subtraction or more
general by spectral weighting techniques is described and recent de-
velopments exploiting improved a priori knowledge are presented.

A block diagram of a typical implementation is illustrated in Fig.
3. Due to the linearity of the DFT, the noisy spectral components
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Figure 3: Single microphone noise reduction system.

can be described in the parameter domain by

Y � m � l � � R � m � l � e jϑ � m � l � � S � m � l � � N � m � l � � (10)

where m is the frame index and l denotes the frequency index.
The complex components of speech and noise

S � SRe
�

jSIm

N � NRe
�

jNIm �

with SRe � Re � S � and SIm � Im � S � , etc. can also be described by
their amplitudes (A � R) and their phases (α � β ) according to,

S � m � l � � A � m � l � e jα � m � l � and N � m � l � � B � m � l � e jβ � m � l � �
For simplicity, the frame index m is omitted in Fig 3 and the follow-
ing. The sub-block for SNR estimation calculates the frequency de-
pendent variances of the speech and noise DFT coefficients. Widely
used methods for estimating the noise spectral variance σ 2

N and the
speech variances σ 2

S are the Minimum Statistics-algorithm [4] pro-
posed by Martin and and the decision directed approach proposed
by Ephraim and Malah [5].

The (conditional) speech estimator is based on statistical models
for speech and noise (a priori knowledge) and uses either the MMSE
or the MAP criterion. Under certain assumptions about the PDFs of
the speech and the noise components, the equations (6) and/or (9)
can be solved analytically. Often, the estimate Ŝ � l � is obtained by
simply applying real-valued spectral weights G � l � � 0 � G � 1 to the
noisy DFT coefficients Y � l � according to

Ŝ � l � � G � l � � Y � l � � (11)

Fig. 4 shows a theoretical model of such a noise reduction algo-
rithm in relation to the conditional estimation problem of Fig. 2a.
The signal degradation consists in the additive background noise
n � k � . In both analysis blocks A and B of Fig. 2a the Discrete Fourier
Transform (DFT) is used.
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Figure 4: Model of noise suppression by conditional estimation.
Correspondence with respect to Fig. 2a:
S � l � � a, Y � l � � b, Ŝ � l � � â.

3.1 Statistical Models for Noise Reduction

The formulation of appropriate transition PDFs p � b � a � � p � Y � S �
usually relies on the assumption, that real and imaginary part of
the noise DFT coefficient N � l � are zero mean independent Gaus-
sian [5] with equal variance, which is justified by the central limit
theorem. For many relevant acoustic noises this assumption approx-
imates the real distribution very well. Thus, the transition PDFs
p � b � a � � p � YRe � SRe � can be written for each frequency index l sep-
arately for the real (and imaginary) part as

p � YRe � SRe � � p � NRe � � 1�
πσN

exp 	 � � YRe � SRe � 2

σ2
N 
 � (12)

On the other hand the transition PDF p � b � a � � p � Y � S � of the com-
plex noisy DFT coefficient Y conditioned on the speech amplitude
A and the phase α can then be written as joint Gaussian and the PDF
of the noisy amplitude R given the speech amplitude A as Rician.

p � Y �A � α � � 1
πσ2

N
exp 	 � �Y � Ae jα � 2

σ2
N 
 (13)

p � R �A � � 2R
σ2

N
exp 	 � R2 �

A2

σ2
N 
 I0 � 2AR

σ2
N � � (14)
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I0 denotes the modified Bessel function of zero-th order.
The statistical model of the real and imaginary parts of the DFT
coefficients S � l � of speech have been considered traditionally to be
Gaussian distributed and consequently, the spectral amplitude A was
assumed to be Rayleigh distributed

p � SRe � � 1�
πσS

exp 	 � S2
Re

σ2
S 
 � p � A � � 2A

σ2
S

exp 	 � A2

σ2
S 
 � (15)

Instead of a Gaussian model, Martin [6],[7] has proposed to use so-
called super-Gaussian models, such as a Laplace or Gamma model
for statistical independent real and imaginary parts of the speech
coefficients.

An even more flexible super-Gaussian model which includes the
Gaussian and the Gamma model as special cases has been proposed
recently in [8],[9] as parametric approximation :

p � A � � µν � 1

Γ � ν �
1 �

Aν

σν � 1
S

exp � � µ
A
σS

�
� (16)

The parameters ν , µ determine the shape of the PDF and thus allow
to adapt the underlying PDF of the conditional estimator optimally
to the real distribution.

3.2 Conditional Estimation for Noise Reduction

Based on the given statistical models p � a � , conditional MMSE or
MAP speech estimators (see â according to (5) and (9)) can be de-
rived. Emphasis will be laid here on recent improvements concern-
ing the exploitation of super-Gaussian a priori knowledge according
to (16). The conditional estimators can generally be designed for ei-
ther complex parameters, i.e., for SRe and SIm, or for the real valued
spectral amplitudes, i.e., for A.
MMSE estimation (5) can be performed according to

ŜRe �
∞�� ∞

SRe � p � SRe �YRe � dSRe �

∞�� ∞
SRe � p � YRe � SRe � � p � SRe � dSRe

∞�� ∞
p � YRe � SRe ��� p � SRe � dSRe

�

(17)

Assuming a Gaussian distributions both of speech (15) and noise
components, i.e., (12), equation (17) can be solved explicitly and
leads to the so-called Wiener filter [10]

Ŝ � l � � G � l ��� Y � l � � σ2
S � l �

σ2
S � l � � σ2

N � l � � Y � l � � (18)

Recently, improved MMSE estimators have been developed with
Laplace or Gamma modeling of the real and imaginary parts of the
speech DFT coefficients [6], [7].

From a perceptual point of view, it is more desirable to estimate
the speech spectral amplitude than the complex spectrum due to the
perceptual unimportance of the phase. The probably best known al-
gorithm of Ephraim-Malah [5] is an MMSE estimator for the speech
spectral amplitude A, i.e.,

Â � E � A �Y � �
∞�

0

A � p � A �Y � dA �

∞�
0

A � p � Y �A ��� p � A � dA

∞�
0

p � Y �A ��� p � A � dA
� (19)

Using (15), (13), the integration results in a spectral amplitude
estimation rule according to (11). Later [11], the same authors

introduced a minimum mean square error log spectral amplitude
(MMSE-LSA) estimator, that minimizes the estimation error w.r.t.
the logarithmic spectrum Â � exp � E � log A �Y � � .
Wolfe and Godsill [12] introduced alternatives to the Ephraim-
Malah spectral amplitude estimator based on the maximum a
posteriori estimation rule MAP (9):

Â � argmax
A

p � A �R � � argmax
A

p � R �A � � p � A �
p � R � � (20)

The MAP spectral amplitude estimator exploits the a posteriori den-
sity p � a � b � � p � A �R � , conditioned on the observed noisy amplitude.
Another alternative was introduced by Wolfe and Godsill [12] in
form of a joint MAP amplitude and phase estimator which results
in a very similar weighting function.
In [8] and [9], the super-Gaussian model (16) has been applied in
combination with the MAP or joint MAP approach of Wolfe and
Godsill. Here the resulting efficient weighting rule allows an adap-
tation of the underlying super-Gaussian statistical model to the real
distribution of the speech spectral amplitude of a given system. Un-
der the assumption of a real-valued weight G � l � (i.e. that the noisy
phase of Y � l � is the phase of the estimate Ŝ � l � ) the maximum of

p � A � α �Y � � resp. log � p � A � α �Y �	�
can be found by partial derivation with respect to A and α ([9]),
leading with (16) to

G � l � � u
���

u2 � ν
2γ � l � � with � u � 1

2
� µ

4 � γ � l ��� ξ � l � � (21)

where ν and µ are constants and ξ and γ are the a priori and the a
posteriori SNRs

ξ � l � � σ2
S � l �

σ2
N � l � ; γ � l � � R2 � l �

σ2
N � l � �

In informal subjective listening tests the super-Gaussian models
are clearly preferred by the test persons.

4. ERROR CONCEALMENT (EC)

Digital speech, audio, and video communication over noisy chan-
nels is usually based on source and channel coding. The source en-
coder delivers source parameters such as, e.g., A-law coded speech
samples, or filter coefficients of the digital vocal tract model. The
achievable speech, audio, or video quality is determined by the
model, the quantizers and the resulting net bit rate of the source
coding algorithm. For error protection channel coding is applied to
the corresponding bit patterns of these parameters, to preserve the
quality level over a wide range of channel characteristics. Never-
theless, even with channel coding residual bit errors occur in case
of (temporarily) adverse channel conditions that may lead to a se-
vere degradation of the signal quality. These annoying effects can
be reduced or even be eliminated by error concealment (e.g., [13],
[14]).

In this section we will discuss a concept of conditional parameter
estimation that can be applied at the receiving end without any mod-
ifications of the transmitter. It is assumed that a parametric source
encoder delivers quantized parameters v. Each parameter value is
transmitted over the noisy channel as a bit pattern (bit vector) � . At
the receiving end a SISO channel decoder (Soft Input - Soft Out-
put) is assumed, which produces soft information. This information
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consists of bipolar bits �� and a reliability measure (instantaneous
error probability) per received bit. This joint information can equiv-
alently be described by so-called L-values or by real valued softbits
x̃, with � 1 � x̃ � �

1. A detailed discussion of these representations
is beyond the scope of this paper.

The essential point of error concealment by exploiting this soft
information is, that within the source decoding process reliability
information from the channel decoder and a priori knowledge about
the source is taken into consideration.

In the softbit approach we replace the table lookup module by a
conditional parameter estimator.

The actual overall transmission system is depicted in Fig. 5.
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Figure 5: Error concealment by softbit source decoding .

The codec parameter ṽk at time instant k is quantized according to���
ṽk � � vk with vk � � v � i � � i � 0 � 1 �����	� 2M � 1 � � QT (QT: quanti-

zation table) and can be represented by the quantization table index
i. At the time instant k a bit combination

�
k � � xk � 0 � � xk � 1 � � �	��� xk � M � 1 ��� (22)

consisting of M bits is assigned via bit mapping (BM) to each
quantized parameter vk (or quantization table index i). There is a
unique mapping between the quantizer levels vk and the bit patterns
�

k � � � � i � � i � 0 � 1 ������� 2M � 1 � The bits are assumed to be bipolar,
i.e., xk � � � 1 � � 1 � . Due to the channel noise the received bit com-
bination �� k is possibly not identical to the transmitted one. In the
conventional hardbit decoding scheme the received bit combination
�� k is applied to table look up decoding (inverse bit mapping scheme
(BM

� 1)). Thereafter, the decoded parameter v̂k is used within the
specific parametric source decoder algorithm to reconstruct samples
ŝ of the speech signal (see also Fig. 1).

The concept of error concealment by softbit source decoding (SD)
as depicted in Fig. 5, requires reliability information in terms of
estimated instantaneous bit error probabilities

�
k � � Pk � 0 � � Pk � 1 � � ����� Pk � M � 1 ��� (23)

of the hardbit combination �� k.
The kernel of the SD-algorithm consists of
� step 1: calculation of 2M a posteriori probabilities

P � v � i � � �� k � � P � � � i � � �� k � with i � � 0 � 1 ������� 2M � 1 �
� step 2: estimation of a real-valued parameter v̂k.

Fig. 6 shows the theoretical model of this approach. With regard
to Fig. 2b the analysis block A delivers a quantized parameter v, e.g.
a predictor coefficient of a speech codec (see also Fig. 5). In con-
trast to that, the analysis block B produces the quantized version
v of this parameter in terms of the bit pattern � . This bit pattern
is transmitted over the equivalent noisy channel, which introduces
disturbance (in addition to the quantizer). At the receiving end, we
have a possibly degraded bit pattern plus some reliability informa-
tion, represented by the softbits x̃. The task of the estimator is to
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Figure 6: Theoretical model of softbit error concealment by condi-
tional estimation. Correspondence with respect to Fig. 2b:
v � a (quantized parameter), �� ��� (softbit vector), v̂ � â.

determine an estimate v̂ according to the MMSE or MAP criterion,
taking the reliability information from the channel decoder and the
a priori knowledge about the source into account.

4.1 Statistical Models for Error Concealment

In specifying the required a priori knowledge there are some de-
grees of freedom. We need a priori knowledge about the quantized
parameter in terms of the 2M probabilities P � � � i � � � P � v � i � � � i �
0 � 1 ���	��� 2M � 1, i.e., the histogram of the quantized parameter v.

In the general case we can model the quantized parameter as
a Markov process. To find out an appropriate Markov order it
is convenient to measure terms such as P � � k � , P � � k � � k � 1 � , or
P � � k � � k � 1 � or even higher order conditional and joint probabili-
ties. This can be achieved by applying a large signal database to
the source encoder and by counting how often the different quan-
tizer output symbols, or different pairs of output symbols, occur.
We call P � � k � 0th order a priori knowledge (AK0) because it gives
a statistical description of a 0th order Markov process, i.e., a mem-
oryless process. Accordingly, we call P � � k � � k � 1 � or P � � k � � k � 1 �
1st order a priori knowledge (AK1) because it refers to a 1st order
Markov process. The decision which model should be taken is a
matter of the
� observed redundancy
� allowed complexity of the softbit source decoder
� tradeoff between performance and complexity.

For simplicity we restrict here to the case of a 0th order Markov
process. Then the statistical model of the parameter consists of the
measured histogram of the quantized parameter, i.e. the probabili-
ties P � � � i � � � P � v � i � � � i � 0 � 1 ������� 2M � 1. With the entropy defined
as

H � � k � � � 2M � 1

∑
i 	 0

P 
 � � i ��� log2 P 
 � � i �
� � (24)

the redundancy of ∆R � M � H � � k � can be exploited for error con-
cealment.

4.2 Conditional Estimation for Error Concealment

For parameter estimation we can use once more either the MMSE
or the MAP criterion. The right decision depends on the specific
parameter. In speech coding, the MAP criterion is appropriate e.g.
for the pitch information, while for filter parameters and gain factors
the MMSE criterion gives subjectively better results.

Let us assume that the channel related transition probabilities
P � �� k � � � i � � on bit vector level can be computed from the Pk on
bit level. This is true, if we can derive the (estimated) instantaneous
bit error rate from the soft output x̃ (Fig.6), respectively from the
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decoder reliability DRI (Fig. 5) of the equivalent channel. Using
Bayes‘ theorem the a posteriori probability P � a � b � � P � � � i � � �� k �
can be calculated as

P � � � i � � �� k � � P � �� k � � � i � � P � � � i � �
∑2M � 1

j 	 0 P � �� k � � � j � � P � � � j � � (25)

If we have received a certain bit pattern �� k, then the probability
P � � � i � � �� k � quantifies the reliability of the decision that the pattern
� � i � and thus the quantized parameter value v � i � was transmitted at
time k.

The MAP estimator follows the criterion

v̂k � v � j � with j � argmax
i

P 
 � � i � � �� k
� � (26)

MAP estimation minimizes the probability of an erroneous decoded
parameter. The decoded parameter v̂k equals one of the code-
book/quantization table entries. In case of error-free transmission
only one of the 2M a priori probabilities takes the value 1, all the
others are 0. In this situation the MAP-decoder selects the same
table entry as the conventional table-look up decoder.

In applying the MMSE solution according to (5) we have to take
into consideration, that the statistics of the parameters are described
here by discrete probabilities. Therefore, the integrals have to be
replaced by discrete summations. The optimum decoded parameter
in a minimum mean square error sense equals

v̂k �
2M � 1

∑
i 	 0

v � i � � P 
 � � i �
k
� �� k

� � (27)

According to the orthogonality principle of linear mean square es-
timation (see, e.g., [2]) the variance of the estimation error e0 �
v̂k � vk is σ2

e � σ2
v � σ2

v̂ with σ2
v being the variance of the undis-

turbed parameter vk and σ2
v̂ denoting the variance of the estimated

parameter v̂k. Because of σ 2
e � 0 we can state that the variance of

the estimated parameter is smaller than or equals the variance of the
error free parameter.

For the worst case channel with Pk � 0 � 5 the a posteriori prob-

abilities simplify to P � � � i � � �� k � � P � � � i � � . If in this case the un-

quantized parameter ṽk as well as the quantization table entries v � i �
k

are distributed symmetrically around zero the MMSE estimated pa-
rameter according to Eq. (27) is attenuated to zero (by weighted
averaging). These symmetries are often found for gain factors (plus
sign) in speech and audio encoders. Thus the MMSE estimation of
gain factors results in an inherent muting mechanism providing a
graceful degradation of the signal quality. This is one of the main
advantages of softbit source decoding.

On the other hand, if the channel is free of errors (pe � 0) and � � κ �
has been transmitted, then all the parameter transition probabilities
are zero except P � �� k � � � κ � � � 1. This yields P � � � κ � � �� k � � 1 while
all other a posteriori probabilities become zero. As a consequence,
also the MMSE estimator yields the correct parameter value v̂k � vk.
This is equivalent to bit exactness in clear channel situations. In
practical applications e.g. in the GSM transmission link, the sub-
jective speech or audio quality can significantly be improved in the
presence of residual errors at the output of the channel decoder.

5. BANDWIDTH EXTENSION (BWE)

In today’s public telephone networks, the limitation to a frequency
range of about 0.3 to 3.4 kHz causes the typical sound of the

narrowband telephone speech. As long as there are still (sending)
narrowband terminals in the network, artificial bandwidth exten-
sion is a very attractive feature for any receiving wideband terminal.

The basic concept of artificial bandwidth extension is to exploit
implicit redundancy of the linear source-filter model, which is
widely used in speech coding and recognition. This model con-
sists of an auto-regressive (AR) filter (corresponding to the vocal
tract) and a source producing a spectrally flat excitation. According
to this model bandwidth extension is divided into two separate tasks
[15]:
� the extension of the spectral envelope of the speech signal and
� the extension of the excitation signal.

A common feature of most of the algorithms proposed in literature
is, that in a first step, the baseband of the excitation (0 � 3 ���	� 3 � 4 kHz)
is obtained from the narrowband speech signal by linear prediction
(LP). The excitation signal is spectrally flat and can be extended to
the frequency band 0 � 05 �	��� 7 � 0 kHz by simple spectral folding or
(pitch synchronous) modulation techniques (e.g. [15], [16], [17]).

In a second step, the spectral envelope of the wideband speech
signal is estimated in terms of LP coefficients or in terms of the
corresponding cepstral coefficients.

Finally in a third step, the artificial wideband speech signal is pro-
duced by applying the extended excitation signal to the extended
AR-filter.

A simplified block diagram of such an approach is given in Fig. 7
[18],[17], where the wideband spectral envelope is estimated in
terms of cepstral coefficients �� wb.
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Figure 7: Block diagram of the BWE algorithm

The estimated cepstral coefficients �� wb are converted to the wide-
band LP-coefficients ˆ�

wb which describe the all-pole (vocal tract)
filter 1 � Â � z � of the source-filter model. The estimation is based on
the observation of a feature vector � that is extracted from the nar-
rowband speech signal snb � k � , which has been interpolated before
to the sample rate of fs � 16 kHz.

By applying the corresponding (inverse) FIR analysis filter Â � z �
to the narrowband input signal snb � k � , an estimate ûnb � k � of the nar-
rowband excitation signal (prediction residual) is derived, since the
analysis filter is the inverse of the vocal tract (synthesis) filter. The
extension of the excitation signal converts the narrowband excita-
tion signal ûnb � k � into an extended version ûwb � k � by exploiting the
spectral flatness. The extended wideband excitation signal ûwb � k � is
fed into the wideband all-pole synthesis filter 1 � Â � z � to synthesize
the enhanced output speech ŝwb � k � .

In the bandwidth extension algorithm described here [18],[17], the
method of conditional estimation is applied in a more sophisticated
version than for acoustical background noise reduction, as the a pri-
ori knowledge is now based on a state model of speech production.
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Here, the kernel task of extending the spectral envelope will be
considered only. Fig. 8 describes this task in the context of condi-
tional estimation according to Fig. 2a.
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Figure 8: Model of bandwidth extension by conditional estimation
Correspondence with respect to Fig. 2a: �

wb � � , � ��� , �� wb � ��
(vectors); wb=wideband; nb=narrowband

With regard to Fig. 2a, the two analysis procedures A and B are
different. By the analysis A, we calculate via linear prediction (LP)
analysis, the vector of cepstral coefficients cccwb of the wideband
speech signal swb � k � , whereas analysis B delivers a feature vector

� which is extracted from the narrowband signal snb � k � . The band-
width extension algorithm estimates the cepstral coefficients using
the feature vector and an underlying state model of speech produc-
tion. Each speech frame of 20 ms with time or frame index m, can
be characterized by a state Si � i � 1 �	����� Ns, the typical vector of
cepstral coefficients �� i and the ”measured” feature vector � . For
simplicity the frame index will be omitted in the sequel.

5.1 Statistical Model for Bandwidth Extension

5.1.1 State Model

Each state Si � i � 1 � 2 ������� NS of the model is assigned to a typical
speech sound (frame of 20 ms) which is associated with a represen-
tative envelope �� i.

The states of the model are defined by the entries �� i of a vector
quantizer (VQ) of the spectral envelope representation �

wb (vector
of cepstral coefficients of the wideband speech signal): each cen-
troid �� i of the vector quantizer represents the spectral envelope of
a typical speech sound. However, wideband speech swb is available
only in the training phase, whereas in the application phase of the
BWE algorithm the states Si have to be identified by classification
of the narrowband speech signal snb.

For each signal frame a vector � of features which should de-
liver maximum information about the state Si, is extracted from the
narrowband signal. The vector � contains features like normalized
autocorrelation function, zero crossing rate, normed frame energy,
gradient index, local kurtosis and spectral centroid, for a detailed
description refer to [17].
The connection between the observations � and the states Si (and
thus the corresponding codebook entries �� i) is contributed by a
state-specific statistical model. For each state Si the features � as
well as the unknown spectral envelope �

wb exhibit characteristic
statistical relations. The following statistical quantities can be mea-
sured during an offline training process with representative wide-
band speech signals swb � k � and corresponding narrowband signals
snb � k � :
� the codebook entries �� i of the vector quantizer (e.g. by using

the standard LBG training algorithm [19])
� the state probabilities P � Si �� the conditional feature PDFs p � � � Si �

(observation probabilities).

Note: In [18],[17] a hidden Markov model(HMM) is used. How-
ever, for explaining the basic concept, a simpler state model is con-
sidered here, which does not take into account the state transition
probabilities.

The wideband speech is needed to calculate the true state sequence
and the narrowband speech is used to determine the conditional ob-
servation PDFs of feature vectors � .

As the observation PDF is conditioned to the state Si there exists
a separate PDF p � � � Si � for each state. According to the definition
of the state model, it is assumed that the observation � for each
frame only depends on the particular frame.
A common way to model measured high-dimensional probability
density functions is the approximation with Gaussian mixture mod-
els (GMM; see, e.g., [20], [21]).

5.2 Conditional Estimation for Bandwidth Extension

5.2.1 Minimum Mean-Square Error Estimation (MMSE)

By the MMSE estimation rule according to (5) a continuous esti-
mation of the parameter vector �

wb shall be performed with the a
posteriori PDF p � � � � � � p � � � � � .

Thus the minimum mean-square error (MMSE) estimator for the
cepstral coefficient vector is given by

�� MMSE � E � � � � � �
∞�� ∞

� � � ∞�� ∞

� � p � � � � � d � � (28)

Because we do not have a model of the conditional PDF p � � � � �
in closed-form, this quantity has to be expressed indirectly via the
states of the model

p � � � � � �
NS

∑
i 	 1

p � � � Si � � � � (29)

Insertion of p � � � Si � � � � p � � � Si � � � � P � Si � � � into (28) yields

�� MMSE �
NS

∑
i 	 1

P � Si � � ��� ∞�� ∞

� � � ∞�� ∞

� p � � � Si � � � d � � (30)

which can be written as:

�� MMSE �
NS

∑
i 	 1

ˆ� i P � Si � � � � (31)

Hence, the estimated coefficient set �� MMSE is calculated by a
weighted sum of the individual code book entries ˆ� i, which are
weighted by the respective a posteriori probabilities of the corre-
sponding states. Accordingly, the described MMSE estimator can
be interpreted in analogy to the error concealment algorithm de-
scribed in Section 4 as a soft classification.

5.2.2 Calculation of A Posteriori State Probabilities P � Si � � �
The a posteriori probability P � Si � � � can be formulated in terms of
the measured state probabilities P � Si � and the measured conditional
feature PDFs p � � � Si � as follows:

P � Si � � � � p � Si � � �
p � � � � p � � � Si ��� P � Si �

∑NS
j 	 1

p � � � S j ��� P � S j �
� (32)

In the denominator of (32) the hardly tractable PDF p � � � of the
observation sequence has been replaced by a summation over the
marginal density of the joint PDF p � S j � � � � p � � � S j ��� P � S j � .
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6. CONCLUSION

If speech is transmitted in the presence of acoustical background
noise over a disturbed digital telephone channel, the speech qual-
ity at the receiving end will be degraded. First of all, the speech
quality is limited due to the telephone frequency characteristic
(0 � 3 ����� 3 � 4 kHz) of A/D conversion. Secondly the performance
of the speech codec will be reduced by the acoustical background
noise. Finally, residual bit errors occur in practice, if the channel de-
coder is temporarily overloaded during adverse channel conditions.

These three sources of degradation can be combated by three dif-
ferent advanced approaches of speech enhancement, i.e.
� noise reduction (NR)
� error concealment (EC)
� bandwidth extension (BWE).

It has been shown in this contribution that the solutions found for
these problems have the same mathematical roots in terms of condi-
tional Bayesian estimation. From an algorithmic point of view, the
main differences consist in the underlying statistical models based
on probability density functions in the case of NR, on discrete prob-
abilities in the EC-application and a mixture of probabilities and
densities in the case of BWE.

For simplicity, the concepts have been explained without taking
frame-to-frame correlation into account. However, this extension is
straightforward and can be found in the cited literature.

For each of these three topics state of the art approaches and
recent new solutions have been presented.

Acknowledgement: The author would like to thank Peter
Jax and Thomas Lotter for many valuable discussions and
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