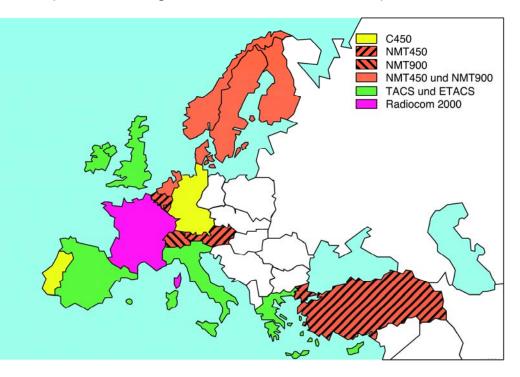


Wireless Speech and Audio Communications A Time Warp

Peter Vary



Audio examples will be made available at: http://www.ind.rwth-aachen.de/en/publications/

Time Warp Prologue | 1985

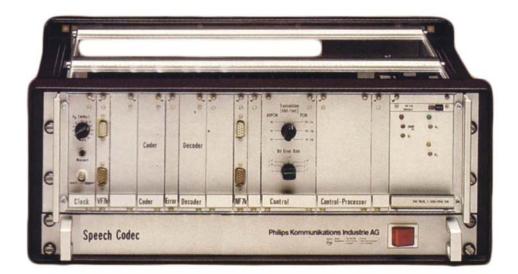
Non compatible analog cellular standards in Europe

Milestones

1984 French-German Initiative for Digital European Cellular Radio

1988 GSM Standard: Global System for Mobile Communications

1990 European IP-Backbone-Network EBONE


1992 Commercial GSM Networks

Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 3

RWITHAACHEN

Speech Codec | 1985

ind

GSM Mobile Station | 1989

ind

Peter Vary * Wireless Speech and Audio Communications – A Time Warp | 5

RWTHAACHEN

First Hand-Held GSM Mobile Phone | 1992

Motorola International 3200, "The Brick Phone"

- **□** ca. 2.500 €
- □ 750 mAh battery
- **520 grams**
- Talk time 60 minutes
- Standby 8 h
- No data service, no SMS messaging

iPhone 6 2015

- □ 699 999 €
- **129 grams**
- **Talk time 14 h** (3G)
- Standby up to 250 h
- GSM, UMTS, LTE, 5G, WiFi, Bluetooth, GPS, NFC
- □ A8 processor, 64 bit architecture
- M8 motion co-processor, 2 billion transistors
- Gyro sensor, barometer, ...
- Apps, apps, apps,

→ The 2015 smartphone is a 1985 hand-held supercomputer!!

30 Years of Moore's Law | 1985 - 2015

- Evolution of DSP technology
- **Doubling 15 times:** $2^{15} = 32.768$

	1985 NEC µPD 7720	2015 TMS 320C6678	
		8xMulticore	
		Pars Bars	Factor:
Clock	8.33 MHz	1.4 GHz	168
Data RAM	256 Bytes	8.45 MBytes	33000
Multiplications (fixed point)	4 x 10 ⁶ /s	358.4 x 10 ⁹ /s	89600

ind

Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 9

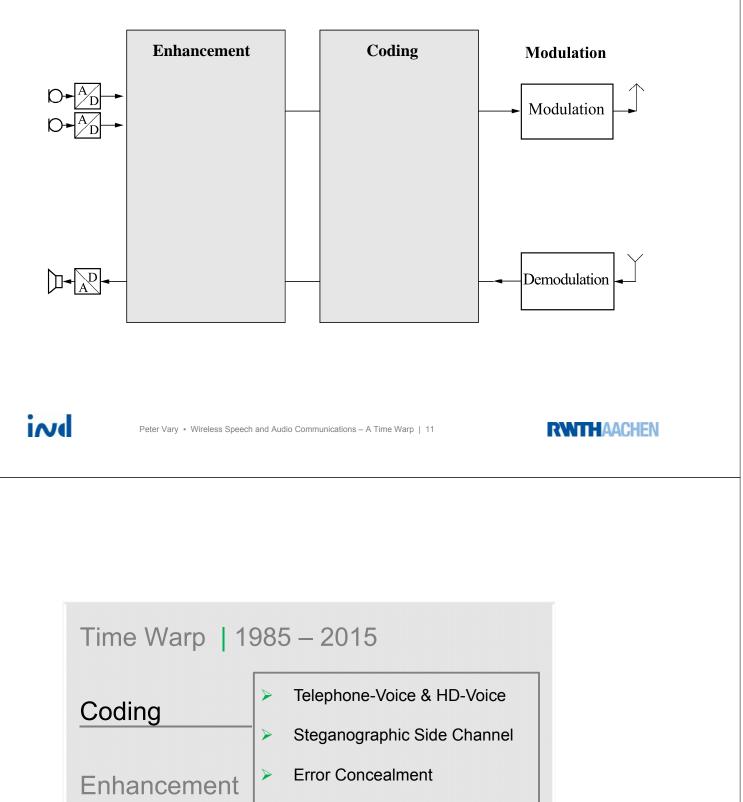
```
RWITHAACHEN
```

The Voice Quality Issue | 1992 - 2015

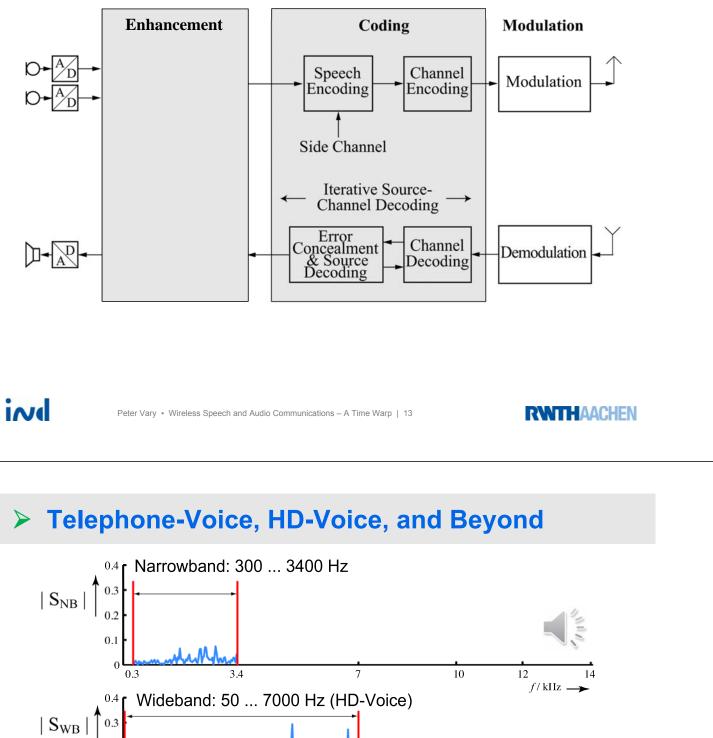
- 1992 | Mobility is the luxury, not voice quality
- 2015 | Voice quality will be a major issue
 - ightarrow users rely more and more exclusively on mobile phones

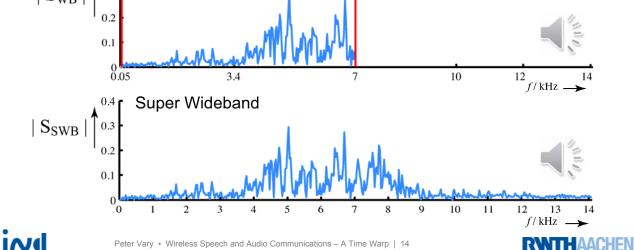
Detrimental quality factors & countermeasures

- Quantization Noise
- Bit Errors
- Packet Losses
- Latency
- Audio Bandwidth

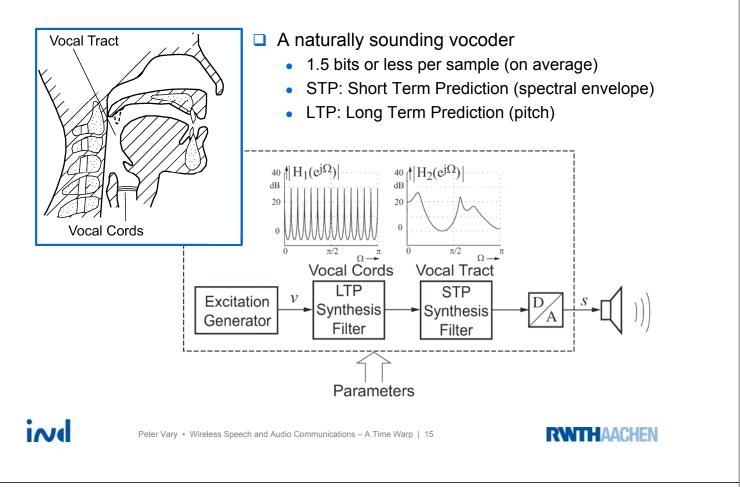

- Audio Bandwidth
- Background Noise
- Loudspeaker Echo
- Wind Noise
- Room Reverberation

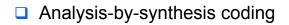
Voice Quality Improvement | 1992 - 2015

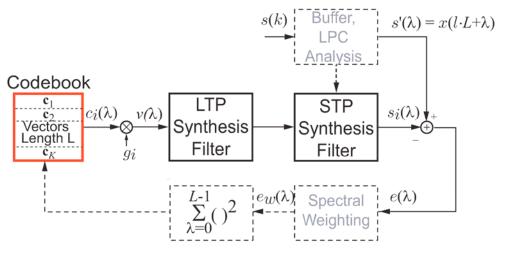

Joint Source-Channel Decoding


Trends

ind


Coding in a Mobile Phone




Peter Vary • Wireless Speech and Audio Communications - A Time Warp | 14

Model Based Speech Coding

CELP: Code Excited Linear Prediction

STP = Short Term Prediction (spectral envelope) LTP = Long Term Prediction (pitch)

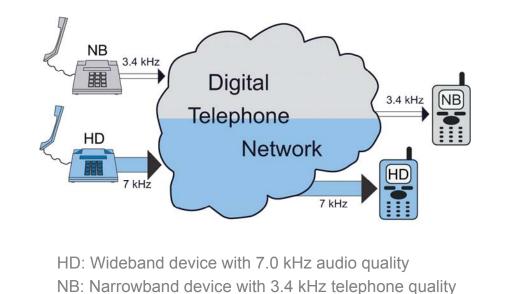
Speech Codecs for GSM, UMTS, LTE, and IP

	f _s /kHz	WMOPS	kbit/s
Full Rate / Half Rate Speech Codecs			
1988 FR	8	3.4	13.0
1994 HR	8	18.5	5.6
Adaptive Multi-Rate Speech Codecs			
1998 AMR-NB	8	≤ 17	4.75 12.2
2001 AMR-WB (HD)	16	≤ 39	6.6 23.85
2005 AMR-WB ⁺ (HD ⁺)	32	≤ 72	6.6 32.0
IP Speech Codecs			
2006 ITU G.729.1	8 or 16	19 36	8.0 32.0
2009 ITU G.719	48	18	32 128
2012 IETF (Opus, mono/stereo)	8 - 48	≤ 40	8 128
2015 3GPP EVS	8 - 48	≤ 86	5.9 128

ind

Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 17

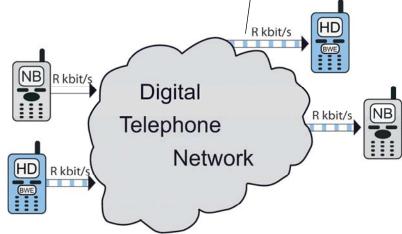
CELP: B.S. Atal, J.R. Remde | 1982 RPE-LTP: P. Vary, J. Sluyter, C. Galand | 1988


Speech Codecs for GSM, UMTS, LTE, and IP

	f₅/kHz	WMOPS	kbit/s
Full Rate / Half Rate Speech Codeca	6		
1988 FR	8	3.4	13.0
1994 HR	8	18.5	5.6
Adaptive Multi-Rate Speech Codecs			
1998 AMR-NB	8	≤ 17	12.2
2001 AMR-WB (HD)	16	≤ 39	23.05
2005 AMR-WB ⁺ (HD ⁺)	32	≤ 72	24.0
IP Speech Codecs			
2006 ITU G.729.1	8 or 16	19 36	8.0 32.0
2009 ITU G.719	48	18	32 128
2012 IETF (Opus, mono/stereo)	8 - 48	≤ 40	8 128
2015 3GPP EVS	8 - 48	≤ 86	5.9 128

HD-Voice and the Compatibility Problem

- □ Separate systems for NB- and HD-telephony!
- □ HD requires upgrading of both networks and terminals
- □ Long transition period with narrowband transmission


Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 19

RWITHAACHEN

Steganographic Side Channel

Hidden data transmission by watermarking

Bitstream, "visible" rate R, including a "hidden" side channel with rate S

Hidden side channel for

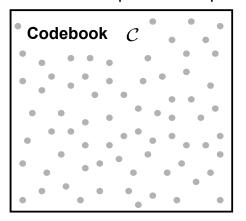
- HD-compatibility without increase of bit rate
- frame loss concealment and/or security features
- No network upgrade

ind

Data Hiding in CELP Codecs

Codebook search cost function

$$\chi(\mathbf{c}) = ||\mathbf{s}'||^2 - \frac{(\mathbf{s}'^T \mathbf{H} \mathbf{c})^2}{||\mathbf{H} \mathbf{c}||^2}$$


 $\mathbf{s}^{'}$ = Target speech vector

 \mathbf{c} = Codebook vector

$$\mathbf{H}$$
 = Impulse response matrix

e.g.
$$|\mathcal{C}| = 2^{35} \approx 32 \cdot 10^9$$

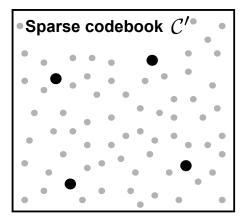
35 bits per 40 samples

ind

Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 21

CELP: B.S. Atal, J.R. Remde | 1982 M.R. Schroeder, B.S. Atal | 1995

Data Hiding in CELP Codecs


Codebook search cost function

$$\chi(\mathbf{c}) = ||\mathbf{s}^{'}||^{2} - rac{(\mathbf{s}^{'T} \mathbf{H} \mathbf{c})^{2}}{||\mathbf{H} \mathbf{c}||^{2}}$$

□ **Restricted** (sparse) codebook search

$$\mathbf{\hat{c}} = \arg\min_{\mathbf{c}\in\mathcal{C}'}\chi(\mathbf{c})$$

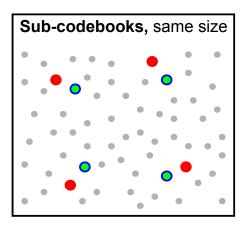
Examined subset: $\mathcal{C}' \subset \mathcal{C}$ e.g. EFR: $|\mathcal{C}'|/|\mathcal{C}| < 10^{-6}$

Data Hiding in CELP Codecs

Codebook search cost function

$$\chi(\mathbf{c}) = ||\mathbf{s}^{'}||^{2} - \frac{(\mathbf{s}^{'T} \, \mathbf{H} \, \mathbf{c})^{2}}{||\mathbf{H} \, \mathbf{c}||^{2}}$$

Restricted (sparse) codebook search


 $\mathbf{\hat{c}} = rg\min_{\mathbf{c}\in\mathcal{C}'}\chi(\mathbf{c})$

□ Embedding of "message" *m*

$$\mathbf{\hat{c}} = rg\min_{\mathbf{c}\in\mathcal{C}_m}\chi(\mathbf{c})$$

 $\mathcal{C}_m \cap \mathcal{C}_{m'} = \emptyset$ if $m \neq m'$

2 sub-codebooks for embedding 1 bit of message $|\mathcal{C}_0| = |\mathcal{C}_1| = |\mathcal{C}'|$

Receiver recognizes codebook, used per sub-frame

ind

Peter Vary • Wireless Speech and Audio Communications - A Time Warp | 23

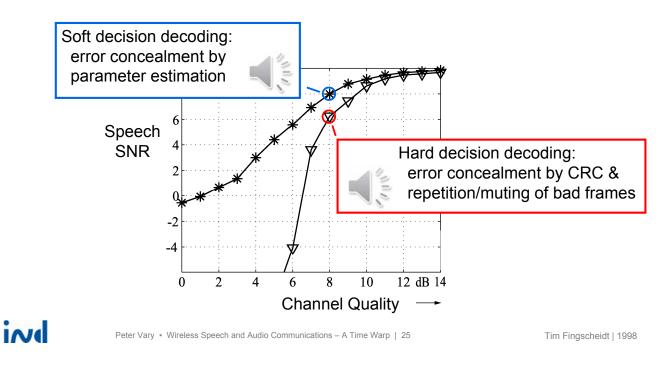
Bernd Geiser | 2008

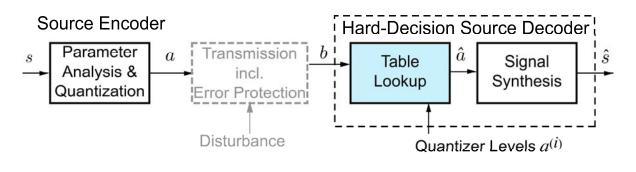
Data Hiding Applied to EFR Codec

Bandwidth extension of telephone speech using hidden data channel

Example:

- □ Bit rate: R=12.2 kbit/s
- Compatible bit stream
- □ Hidden data rate: S=1.65 kbit/s = 8 or 9 bits/5 ms
- □ 2⁹ different (algebraic) sub-codebooks
- Bandwidth extension by noise excitation of a synthesis filter
- No audible degradation in NB decoder



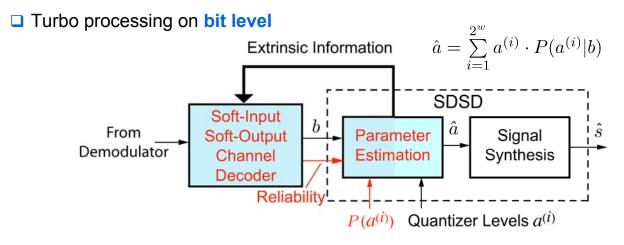

Error Concealment

- GSM Full Rate Codec (13.0 kbit/s)
- GSM channel coding, modulation, equalization
- Typical urban channel (10 km/h)

Speech Encoding and Hard Decision Decoding

- □ Speech encoding → quantized parameters
- Parameter decoding by table lookup

- *a* = parameter
- b = group of bits



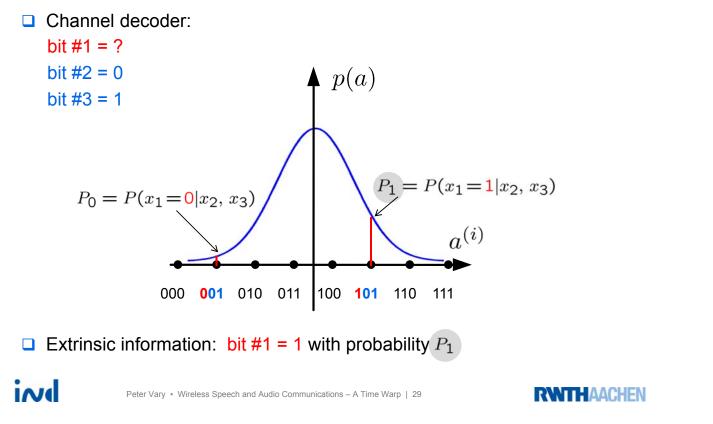
Error Concealment by Soft Decision Decoding

Parameter decoding by conditional estimation $\hat{a} = \sum_{i=1}^{2^w} a^{(i)} \cdot P(a^{(i)}|b) \quad b = \text{group of bits}$ Source Encoder Soft-Decision Source Decoder Parameter Transmission aParameter Signal Analysis & incl. Estimation Synthesis Quantization Error Protection Reliability Disturbance $P(a^{(i)})$ Quantizer Levels $a^{(i)}$ s: input speech-audio signal *a*: parameter, e.g. LP coefficient, gain factor, ... A priori knowledge: e.g. $P(a^{(i)})$ quantizer histogram Bayes theorem: $P(a^{(i)}|b) = \frac{P(a^{(i)}) \cdot P(b|a^{(i)})}{P(b)}$ ind Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 27 Tim Fingscheidt | 1998

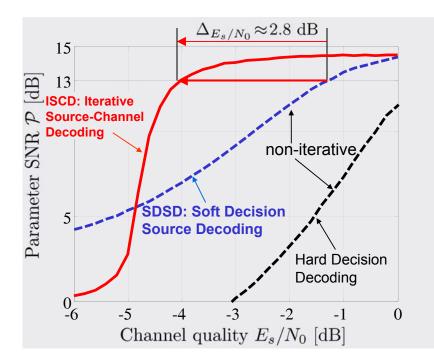
Iterative Source-Channel Decoding

Error Correction and Concealment

Mean Square Estimation (MSE) on parameter level


Extrinsic information on bit level:

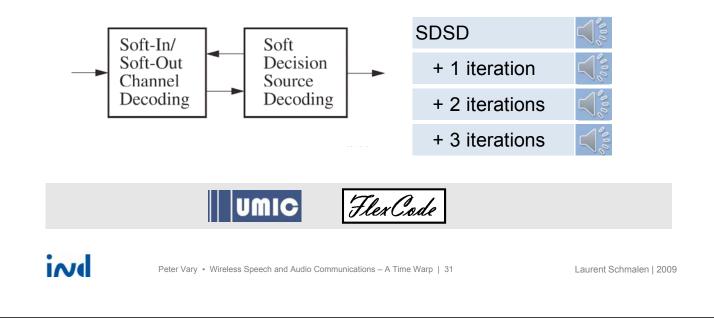
Parameter estimation supporting repeated channel decoding



Extrinsic Information from Source Decoder

Quantization of parameter a with 8 levels / 3 bits

Iterative Source-Channel Decoding (ISCD)

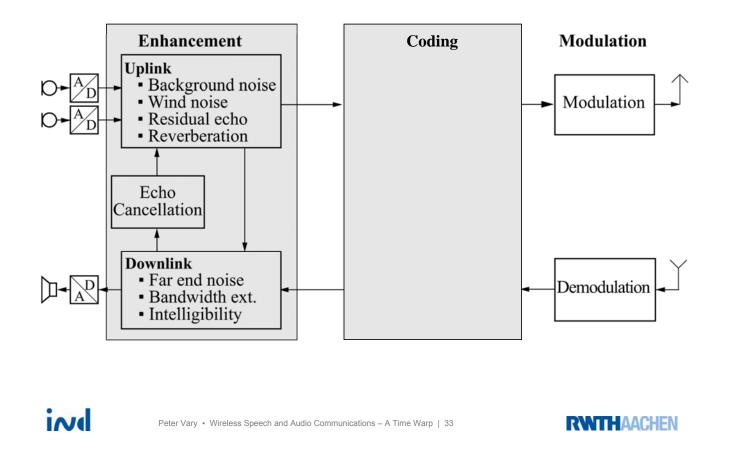


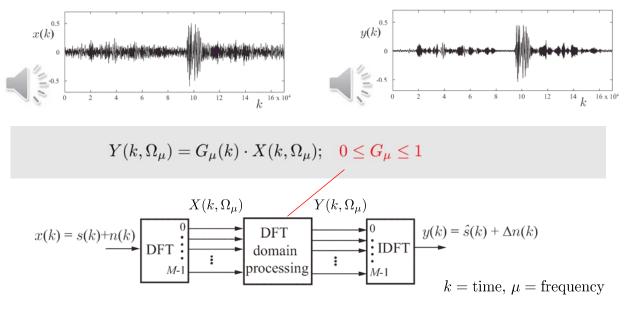


Example:

- A-law PCM: 8-bit per sample, 16 kHz sampling rate
- □ AWGN: bit error rate = 5.5 %

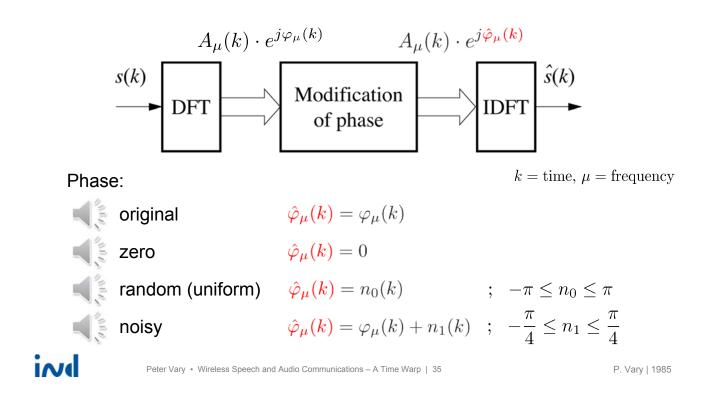
□ Soft decision source decoding exploiting unequal parameter distribution





Uplink & Downlink Enhancement in a Mobile Phone

Uplink Single Microphone Noise Reduction


- Modification of magnitude only
- Noisy phase is kept

i

Relevance of Phase

 $\hfill DFT$ length, M=256 , Hamming-window, overlap M/2

Frame length 32 ms

Spectral Magnitude Subtraction / Weighting Rules

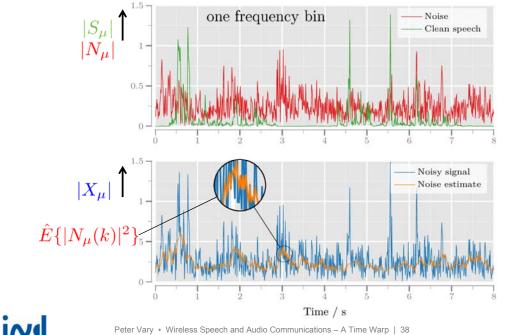
□ Example: Wiener weights by spectral subtraction

$$\begin{split} Y(k,\Omega_{\mu}) &= G_{\mu}(k) \cdot X(k,\Omega_{\mu}); \quad \mathbf{0} \leq G_{\mu} \leq 1 \\ G_{\mu}(k) &= \frac{E\{|S_{\mu}(k)|^{2}\}}{E\{|S_{\mu}(k)|^{2}\} + E\{|N_{\mu}(k)|^{2}\}} \\ &\approx \frac{E\{|X_{\mu}(k)|^{2}\} - \hat{E}\{|N_{\mu}(k)|^{2}\}}{E\{|X_{\mu}(k)|^{2}\}} \end{split}$$

□ Main problem: Estimation of short-term noise power spectrum

 $\hat{E}\{|N_{\mu}(k)|^2\}$

 $E\{|X_{\mu}(k)|^2\}$ = short-term expectation

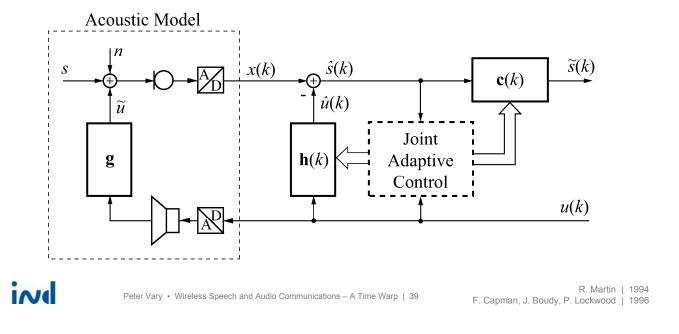

More Spectral Magnitude Weighting Rules

$\square MMSE \qquad [Ep] G_{E\&M} = \frac{1}{\gamma} \cdot \sqrt{\nu} \cdot \Gamma(1.5) \cdot F_1(-0.5, 1, -\nu) \qquad \gamma = \text{a posterior}$	ohraim & Malah, 1984] ori SNR
$\frac{1}{2}\int e^{-t}/t dt$	ohraim & Malah, 1985] $\gamma = \gamma \cdot \frac{\eta}{1+\eta}$
□ MMSE with super-Gaussian models $\hat{S} = E\{S X\} = F_M(X, \sigma_N^2, \sigma_S^2)$	[Martin, 2002]
■ MAP with parametric PDF model $G_L = u + \sqrt{u^2 + \frac{\nu - 1/2}{2\gamma}}$ with $u = \frac{1}{2} - \frac{\rho}{4\sqrt{\gamma \cdot \eta}}$ $\mu, \rho = parameters$	[Lotter, 2003] arameters of PDF model
Dual Kalman filter $\mathbf{K}(k) = \mathbf{P}(k)\mathbf{C}^{H}(k) \left(\mathbf{C}(k)\mathbf{P}(k)\mathbf{C}^{H}(k) + \Psi_{ss}(k)\right)^{-1}$	[Esch 2012]
Peter Vary • Wireless Speech and Audio Communications – A Time Warp 37	RWITHAACHEN

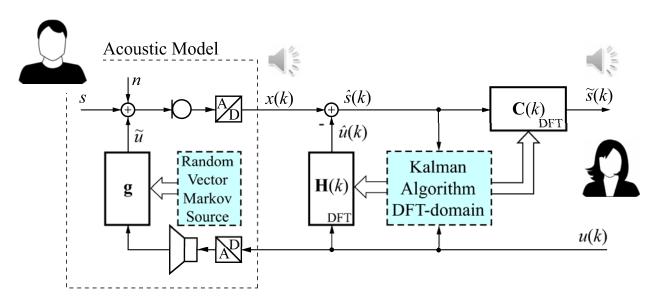
Estimation of $\hat{E}\{|N_{\mu}(k)|^2\}$ by "Minimum Tracking"

□ Example: **Baseline Tracing** of slow variations [Heese, 2015]

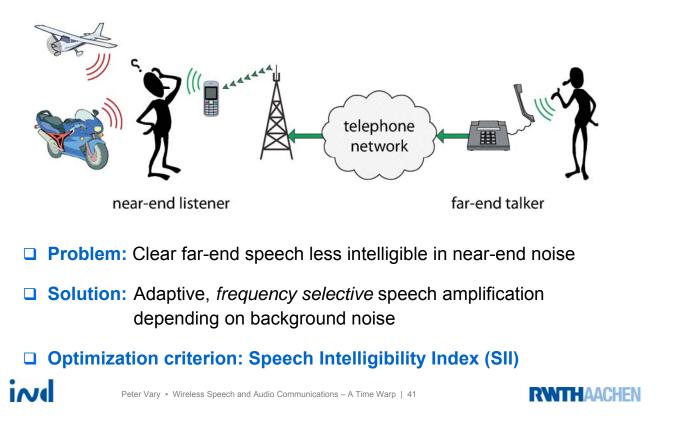
- Performing like a delta modulator in the log. amplitude domain •
- Low complexity implementation in the linear amplitude domain •



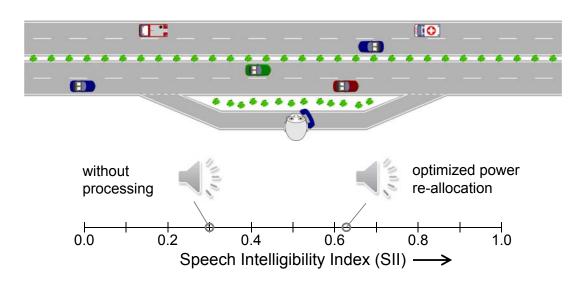
Minimum Tracking: Wolfgang Brox Gerhard Doblinger 1983 1995 Rainer Martin 2001 Timo Gerkmann 2012 Florian Heese 2015


Uplink Joint Acoustic Echo & Noise Control

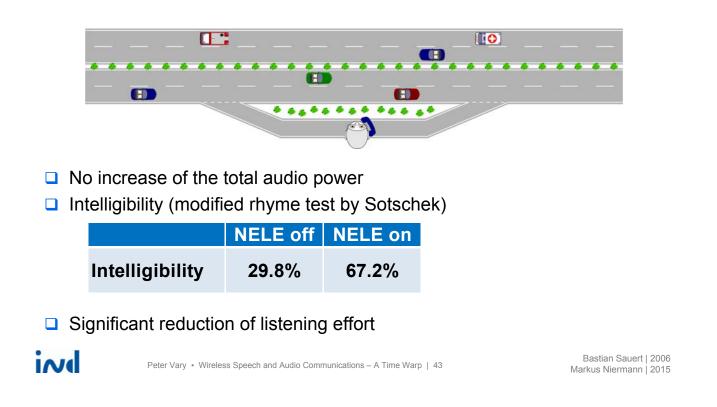
- □ Acoustic path g
- \Box Echo canceller h(k)
- □ Auxiliary postfilter c(k) reduction of residual echo and noise
- Joint adaptive control


Kalman Filter Approach to Acoustic Echo Control

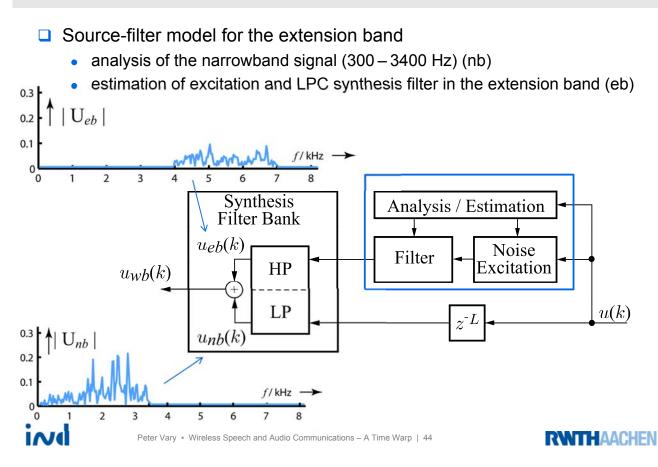
- Room impulse response as a random process
- Far end speech as a deterministic input
- DFT Domain implementation


Downlink Intelligibility Enhancement

Near end listener experiences reduced speech intelligibility

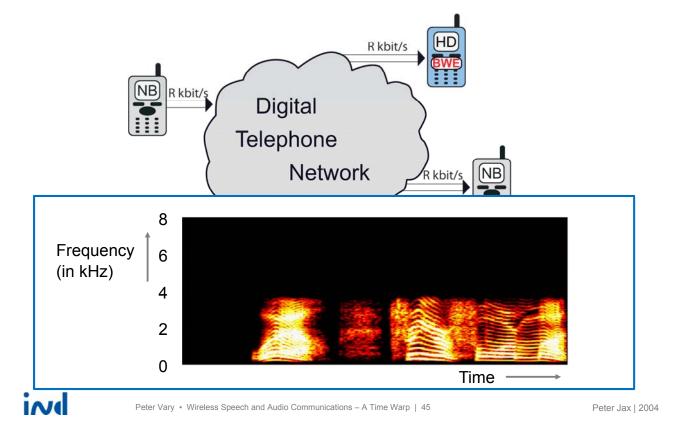

Near-End Listening Enhancement (NELE)

- Spectral power re-allocation exploiting psychoacoustics
- Optimization constraints: power limitation (ear and loudspeaker)



Near-End Listening Enhancement (NELE)

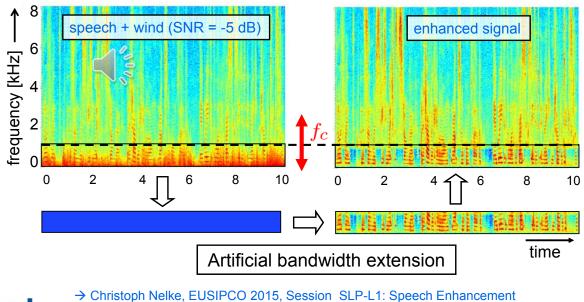
- Spectral power re-allocation exploiting psychoacoustics
- Optimization constraints: power limitation (ear and loudspeaker)



Downlink Bandwidth Extension without Side-Info

Example: BWE without Side Information

Bandwidth extension (BWE) bridges the gap between NB and HD



Uplink Wind Noise Reduction

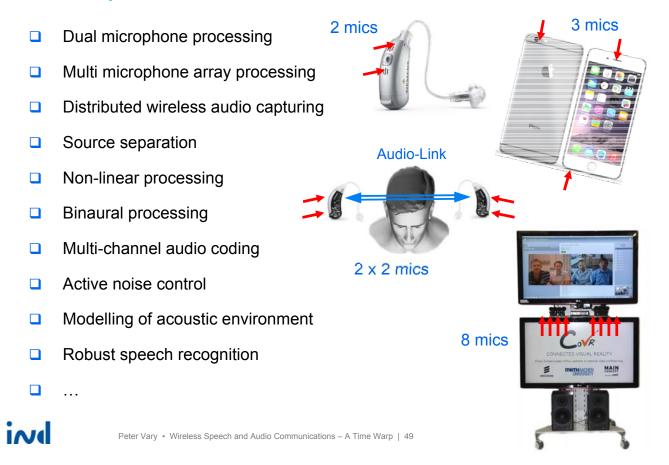
□ Wind noise = low frequency noise with $f < f_c$ (adaptive)

Substitution of disturbed frequency band using BWE

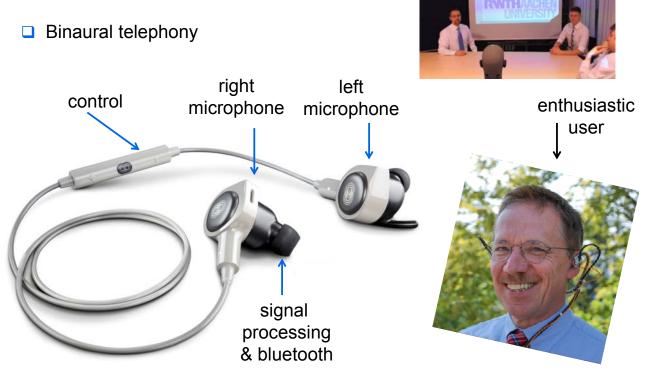
	Time Warp		
	Coding		
	Enhancem		
	Trends	 Coding for Wireless Communications Speech & Audio Enhancement Applications 	
~/4	Peter Vary • Wi	eless Speech and Audio Communications – A Time Warp 47	RWITHAACHEN

Trends Coding for Wireless Communications

- Users rely exclusively on mobile phones
 - voice quality still an issue
- Lost focus on smartphones being also telephones
- Coding standards for wireless
 - wideband (HD) and super-wideband (HD+)
 - dual- and multi channel spatial audio codecs
- Wireless transmission goes "all IP"
 - VoLTE: voice over LTE and 5G
 - HD-voice launched / announced by 132 mobile operators
 - IP transmission eases new codecs



RWITHAACHEN



Trends Speech & Audio Enhancement

🔘 binauric | 2016

https://www.binauric.com

Trends | Applications

Immersive Audio / Multichannel Coding & Processing

ind

Peter Vary • Wireless Speech and Audio Communications – A Time Warp | 51

RWITHAACHEN

Trends | Applications

Smart Home

Components

with Speech & Audio

Speech Reinforcement in Public Address Systems (NELE Approach)

In-Car Communications / Active Noise Cancellation

Wireless Speech and Audio Communications A Time Warp

Thanks for contributions:

Marc Adrat Christiane Antweiler Gerald Enzner Tim Fingscheidt Bernd Geiser Florian Heese Peter Jax Thomas Lotter Rainer Martin Christoph Nelke Markus Niermann Bastian Sauert Magnus Schäfer Laurent Schmalen