RWTH Aachen
University
Institute for Communication
Systems and Data Processing
Skip to content
Direkt zur Navigation
Home
Home

Publications – Details

Evaluating the intelligibility benefit of speech modifications in known noise conditions

Authors:
Martin Cooke, Catherine Mayo, Cassia Valentini-Botinhao, Yannis Stylianou, Bastian Sauert, and Yan Tang
Journal:
Speech Communication
Volume:
55
Number:
4
Date:
May 2013
Pages:
572–585
ISSN:
0167-6393
URL:
10.1016/j.specom.2013.01.001
Language:
English

Abstract

The use of live and recorded speech is widespread in applications where correct message reception is important. Furthermore, the deployment of synthetic speech in such applications is growing. Modifications to natural and synthetic speech have therefore been proposed which aim at improving intelligibility in noise. The current study compares the benefits of speech modification algorithms in a large-scale speech intelligibility evaluation and quantifies the equivalent intensity change, defined as the amount in decibels that unmodified speech would need to be adjusted by in order to achieve the same intelligibility as modified speech. Listeners identified keywords in phonetically-balanced sentences representing ten different types of speech: plain and Lombard speech, five types of modified speech, and three forms of synthetic speech. Sentences were masked by either a stationary or a competing speech masker. Modification methods varied in the manner and degree to which they exploited estimates of the masking noise. The best-performing modifications led to equivalent intensity changes of around 5 dB in moderate and high noise levels for the stationary masker, and 3-4 dB in the presence of competing speech. These gains exceed those produced by Lombard speech. Synthetic speech in noise was always less intelligible than plain natural speech, but modified synthetic speech reduced this deficit by a significant amount.

Download of Publication

Copyright Notice

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

The following notice applies to all IEEE publications:
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

File

cooke13.pdf 386 K