In this paper, we present a near-lossless compression scheme for scalar-quantized source codec parameters based on iterative source-channel decoding (ISCD). The scheme is comparable to a Turbo source coding approach and can inherently incorporate protection against transmission errors. In order to realize a close-to-capacity transmission/compression scheme, we employ irregular redundant bit mappings and irregular inner channel codes. The irregular inner code is composed of (pseudo) randomly punctured convolutional codes of rate > 1, i.e., the compression is performed by strong puncturing of the inner code. The optimization goal is a minimum number of transmitted bits given certain source and channel conditions. We show how the inner and outer component can be jointly optimized resulting in a constrained nonlinear programming problem. Simulation examples show the advantage over systems employing only a single irregular component.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
The following notice applies to all IEEE publications:
© IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.